
Received: 10 November 2015 Revised: 25 May 2016 Accepted: 5 August 2016

DOI 10.1002/dac.3225

R E S E A R C H A R T I C L E

Statistical fingerprint-based intrusion detection system (SF-IDS)

Luca Boero1 Marco Cello1,2 Mario Marchese1* Enrico Mariconti3

Talha Naqash1 Sandro Zappatore1

1Department of Telecommunications, Electronic,

Electric and Naval Engineering (DITEN),

University of Genoa, Italy
2Nokia Bell Labs, Blanchardstown Business &

Technology Park, Snugborough Road Dublin 15,

Ireland
3Department of Security and Crime Science,

University College London, United Kingdom

Correspondence
Mario Marchese, Via all’Opera Pia 13, Genoa, Italy.

Email: mario.marchese@unige.it

Summary
Intrusion detection systems (IDS) are systems aimed at analyzing and detecting secu-

rity problems. The IDS may be structured into misuse and anomaly detection. The

former are often signature/rule IDS that detect malicious software by inspecting

the content of packets or files looking for a “signature” labeling malware. They are

often very efficient, but their drawback stands in the weakness of the information

to check (eg, the signature), which may be quickly dated, and in the computation

time because each packet or file needs to be inspected. The IDS based on anomaly

detection and, in particular, on statistical analysis have been originated to bypass

the mentioned problems. Instead of inspecting packets, each traffic flow is observed

so getting a statistical characterization, which represents the fingerprint of the flow.

This paper introduces a statistical analysis based intrusion detection system, which,

after extracting the statistical fingerprint, uses machine learning classifiers to decide

whether a flow is affected by malware or not. A large set of tests is presented. The

obtained results allow selecting the best classifiers and show the performance of a

decision maker that exploits the decisions of a bank of classifiers acting in parallel.

KEYWORDS

intrusion detection system, IP, machine learning, networking, statistical analysis

1 INTRODUCTION

Important applications such as e-business, e-banking, pub-

lic health service, and defense system control are dependent

on computer networks. For this motivation they are often

object of attacks by malicious software (malware). Malware

is software designed to intrude a computer system without the

consent of the owner through the use of viruses, backdoors,

spywares, trojans, keyloggers, botnets, and worms.1 In this

context accurate malware detection is a necessity.2 Counter-

measures may be dedicated to specific devices, as happens in

the context of mobile devices3–5 and FM radios,6 to specific

applications such as Internet chats,7 to operating systems such

as Android,8 and to given environments such as delay tolerant

networks (DTNs)9 and Ad hoc On-Demand Distance Vector

(AODV)-based MANETs.10

In general intrusion detection systems (IDS) may help

tackle malicious intrusions. An IDS is a hardware/software

designed to automatically alert when someone or some-

thing is trying or has tried to compromise information

systems through malicious actions. In the work of Sabahi and

Movaghar,11 it contains a detailed and interesting classifica-

tion of IDS depending on the following: the location of the

IDS (host based, network based, and hybrid); the detection

time (online and offline); the environment (wireless, wired,

and heterogeneous); the architecture (centralized/distributed);

and the reaction (active/passive). As far as this paper is con-

cerned, the most important IDS classification proposed in

the work of Sabahi and Movaghar11 regards the processing

method adopted to detect possible intrusions: misuse detec-

tion (MD) and anomaly detection. Misuse detection defines

an abnormal behavior and considers all the other behaviors

as normal. Anomaly detection fixes the normal behavior and

considers all the other behaviors as abnormal. From the oper-

ative viewpoint the former contains signature based, rule

based, state transition algorithms, and data mining. The lat-

ter includes statistical, distance, profile, and model-based

schemes. Misuse detection needs to open and inspect the con-

Int J Commun Syst 2016; 1–11 wileyonlinelibrary.com/journal/dac Copyright © 2016 John Wiley & Sons, Ltd. 1

http://dx.doi.org/10.1002/dac.3225


2 BOERO ET AL.

tent of the packets or files traversing the IDS either to collect

and compare signatures with the available signatures in a mal-

ware database or to apply a given set of rules. The MD is often

very efficient, its drawback stands in the weakness of signa-

tures/rules, which may be referred to dated attacks, and in the

required computation time because each single packet needs

to be inspected. Anomaly detection, and, in particular, con-

cerning this paper, statistical analysis based intrusion detec-

tion (SABID) would like to avoid these drawbacks also at the

cost of a lower detection accuracy. Packets are not opened

and inspected, but each traffic flow is monitored over time by

measuring the statistics of a set of variables (called features)

to distinguish between anomalies (possible malware) and

normal behaviors (normal, not infected, and traffic). Some

more detail about these aspects will be provided in the next

section. In the framework of SABID systems, this paper pro-

poses a novel network-based IDS, called SF-IDS (statistical

fingerprint-IDS). The SF-IDS uses the typical flow definition

at IP (Internet protocol) layer and is aimed at deciding whether

an IP flow is malware affected or not. It is structured into a

training phase developed by using a ground truth of known

flows and an operative classification and decision phase. Both

training and classification/decision phases are based on the

definition and extraction of a group of statistical parame-

ters related to each IP flow, which represent the statistical

fingerprint of the flow and on machine learning-based clas-

sifiers devoted to distinguish normal from malicious traffic.

The rest of the paper is organized as follows. The next section

contains the state of the art about machine learning-based

classifiers and misuse and SABID systems. Section 3 presents

the architecture of SF-IDS, the flow definition, and the pro-

posed fingerprint. Section 4 describes the training and clas-

sification/decision phases of SF-IDS. Section 5 contains the

obtained results, and Section 6 contains the conclusions.

2 STATE OF THE ART

2.1 Machine learning-based classifiers

Machine learning-based classifiers are aimed at identifying

to which set of categories a new sample belongs on the

basis of a training set composed by data whose category is

known. In our case classifiers are used to discriminate nor-

mal from malicious traffic as explained in Section 3. Machine

learning-based classifiers may be structured into 2 families:

supervised and unsupervised. Supervised classifiers require

a training phase during which a number of samples whose

classification is known are used to carve N decision regions

in the features space, being N the number of the classes to

be identified. All the samples whose vectors lie in the same

decision region belong to the same class. A sample whose

classification is unknown is classified by determining the

decision region where the feature vector of the sample falls.

The methodology to carve the decision region depends on the

chosen algorithm.

Naive Bayes,12–14 among many others, belongs to the group

of Bayesian classifier15 and requires the independence of the

features. Support vector machine (SVM)13 is a family of meth-

ods that, given a set of training samples, each marked as

belonging to one of 2 classes, build a model that assigns new

samples to 1 class or to the other. An SVM model is a rep-

resentation of the samples as points in space. The 2 classes

must be divided by a gap that should be as wide as possible.

New samples whose classification is unknown are assigned

to a class depending on which side of the frontier they fall

in. The gap may be created in different ways so giving origin

to linear, quadratic, cubic, and radial basis functions (RBFs)

SVM. The K-nearest neighbors (K-NN)12 input consists of

the K closest training samples in the feature space. A sam-

ple is classified by a majority vote of its neighbors, with the

object being assigned to the most common class among its K
nearest neighbors. The K-NN uses a reference cell such as an

hyper-sphere. The cell is expanded up to include K training

samples. In the hyper-sphere case they are the K samples with

minimum Euclidean distance. The sample under examination

is assigned to the class whose training samples among the

K samples are more numerous than the samples of the other

classes. The DTNB16 is a simple Bayesian ranking method

that combines naive Bayes with induction of decision tables.

Ridor17 models large data sets, which result in rule sets having

minimal inter-rule interactions and simple to be maintained.

The SMO implements the sequential minimal optimization

algorithm18 to train a support vector classifier: training an

SVM requires the solution of a very large quadratic program-

ming (QP) optimization problem. The SMO divides the QP

problem into a series of smallest possible QP problems that

are solved analytically. The J48 is a decision-tree algorithm

that generates a pruned or unpruned decision tree by using

C4.5 algorithm19: decision-tree algorithms begin with a set of

cases, or examples, and create a tree data structure that can

be used to classify new cases. Each case is described by a

set of attributes (or features) that can have numeric or sym-

bolic values. There is a label representing the name of a class

associated with each training case. Each internal node of a

decision tree contains a test, the result of which is used to

decide what branch to follow from that node. The leaf nodes

contain class labels instead of tests. In classification mode,

when a test case (which has no label) reaches a leaf node, C4.5

classifies it using the label stored there. The JRIP implements

the propositional rule learner repeated incremental pruning to

produce error reduction (RIPPER), proposed in the work of

Cohen.20 Mentioned C4.5 and RIPPER operate in 2 stages.

First they induce an initial rule set and then they refine it using

a rather complex optimization stage that discards (C4.5) or

adjusts (RIPPER) individual rules to make them work better

together. The PART21 exploits rule sets can be learned 1 rule

at a time, without any global optimization, and infers rules

by repeatedly generating partial decision trees. Random tree,

authored by Eibe Frank and Richard Kirkby, builds a tree that

considers K randomly chosen attributes at each node. It does



BOERO ET AL. 3

not perform any pruning, and it has an option to allow an esti-

mation of class probabilities (or target mean in the regression

case) based on a hold-out set (backfitting). Again authored

by Eibe Frank, RBF network22 is a fully supervised machine

learning scheme that uses gaussian RBF networks. Random

forests23 is an ensemble learning method for classification,

regression, and other tasks. It operates through a multitude of

decision trees at the training time. Each user is assumed to

know about the construction of single classification trees. To

classify a new object from an input vector, the input vector is

put down each of the trees in the forest. Each tree gives a clas-

sification and the tree “votes” for a class. The forest chooses

the classification having the most votes over all the trees in

the forest. “Random forests” is a trademark of Leo Breiman

and Adele Cutler.

Unsupervised classifiers are aimed at framing the flows

under examination within clusters without any “a priori”

information about the samples. They are not efficient for our

goals and are not considered in this paper.

2.2 Misuse and statistical analysis based intrusion
detection systems

A rough comparison about processing method, accuracy,

complexity, speed, and limitations between MD and SABID

(considered representative of the entire class of anomaly

detection for the aim of this paper) methods is reported in

Table 1. In practice the comparison is between IDS that

require the inspection of packets/files/codes and systems

based on the analysis of statistical profiles.

Concerning the large and heterogeneous family of misuse

based IDS, recent research includes the following papers,

among many others. In the work of Blount et al,24 it is a

paper whose experimental results show the detection ability

of the system to learn effective rules from repeated pre-

sentations of a tagged training set. Best system accuracy is

close to 90%. Zhuang et al25 develop an automatic catego-

rization system to automatically group phishing websites or

malware samples by using a cluster ensemble. Malware cat-

egorization results range between 86% and 91%. Shan and

Wang26 propose a host-rule behavior-based detection method,

TABLE 1 Misuse based intrusion detection versus statistical analysis
based intrusion detection systems

Misuse Based Statistical Analysis
Intrusion Detection Based Intrusion Detection

Processing method It examines the It examines samples

whole packet for of traffic statistically

signatures/rules

Accuracy High Low

Complexity High Low

Speed Slow Fast

Limitations It cannot detect new A training data set

virus or encrypted flow is involved

TABLE 2 Evaluation Parameters

Evaluation Parameter Meaning

True negative (TN) A flow is normal traffic, ie, it is

not malware affected and it is correctly

classified as normal traffic.

False positive (FP) A flow is normal traffic, ie, it is

not malware affected but it is wrongly

classified as malware. This case is also

called false alarm.

True positive (TP) A flow is malware affected and it is

correctly classified as malware.

False negative (FN) A flow is malware affected but it is

wrongly classified as normal traffic.

This case is also called Missed Detection.

composed of a clustering engine that groups the objects

(eg, processes and files) of a suspicious program together

into a cluster. Obtained results vary depending on the fixed

threshold of false positives (see Table 2 for a definition): if

you want no false positives, then the system can assume 71%
true positives but if you relax the threshold you can get true

positives rates above 90%: 93.2% with 9.8% false positives

and up to about 97% with 22.5% false positives. The authors

show that their results are more satisfying than the ones

got by commercial antivirus software. Concerning the search

and analysis of opcodes (from operation code, a portion of

a machine language instruction that specifies the operation

to be performed), we can mention the literature.27,28 In the

work of O’Kane,27 it is aimed at individuating a subset of

opcodes suitable for malware detection through SVM. Using

opcode sequences typically needs to label a large amount

of both malicious and benign code. Santos et al28 propose a

method that uses single-class learning to detect unknown mal-

ware families. Specific results vary if labeling is performed

through malicious or benign software but in general: labeling

60% of the legitimate software assures about 85% accuracy.

Among signature-based approaches: the work of Cesare et al29

classifie packed and polymorphic malware through a fast

application-level emulator; the effectiveness is validated by

showing that malware is detected as a variant of existing mal-

ware in 88% of cases. Classification is also quite quick: 1.3

[s] for a sample set. Alhomoud et al30 compare the perfor-

mance of the IDS Suricata and Snort. The percentage of alerts

detected is close to 100% for Snort while the one for Suri-

cata heavily varies on the operating network speed: 98% at

1 Gbps, 91.8% at 1.5 Gbps, and 66.8% at 2.0 Gbps. Cha et al31

select the possible signatures and use only a subset of the

necessary ones.

Concerning the systems that use anomaly detection (or also

hybrid statistical analysis/MD): Aydin et al32 propose a hybrid

IDS combining packet header anomaly detection and net-

work traffic anomaly detection. The combined action seems

to work even if it is difficult to detect precise percentages from

the reported results. Om et al33 introduce a hybrid IDS that



4 BOERO ET AL.

combines k-Means and 2 classifiers: K-nearest neighbor and

Naive Bayes for anomaly detection. The goal by Om et al33 is

to decrease the false alarm rate when intrusions are detected

and classified in 4 categories: denial of service, user to root

(U2R), remote to local (R2L), and Probe. The accuracy varies

depending on the attack: from 92% of U2R to more then 98%
for Probe. Karthick et al34 describe a 2-stage architecture to

tackle intrusions. In the first stage a probabilistic classifier is

used to detect potential anomalies in the traffic. In the second

stage, a hybrid Markov model traffic model is used to narrow

down the number of IP addresses carrying the attack. The per-

formance depends on the number of states used for the Hidden

Markov Model HMM and on other used features: the best con-

figuration provides an accuracy close to 97% and a false alarm

rate below 3%. Elbasiony et al35 introduce a hybrid detection

framework combining MD, which uses a random forest clas-

sification algorithm, and anomaly detection, which exploits

the weighted k-Means scheme. The detection rate of the com-

bined approach is about 98% with a false positive rate of

about 1%.

As far as statistical analysis based detection, 2 papers are

particularly meaningful for the topic of this paper, even if

they are not strictly related to malware detection: the works

of Dusi et al36 and Aiello et al.37 Both contributions are aimed

at detecting application-layer tunnels throughout statistical

fingerprints. Dusi et al36 presents a statistical classification

mechanism called Tunnel Hunter devoted to recognize a

generic application protocol tunneled on top of HTTP or of

SSH. The accuracy is 100% for HTTP tunnels and above 99%
for SSH ones. Aiello et al37 aim at detecting DNS tunnels. The

accuracy for a mix of applications is close to 99%. Another

important paper concerning the approach followed in this

paper is the work of Nakayama et al,38 where streaming con-

tent changes are detected only through traffic patterns built

from the traffic volume achieved by routers. Other papers

must be mentioned as relevant for this paper. Mohammad

et al39 introduce a scheme for intrusion detection operating in

Waikato environment for knowledge analysis (WEKA), used

also in this paper. Zamani et al40 propose to structure machine

learning–based IDS into artificial intelligence based and com-

putational intelligence based ones. The former refer to the

methods from domains such as statistical modeling (as done

in this paper), whereas the latter include methodologies such

as genetic algorithms, artificial neural network, fuzzy logic,

and artificial immune systems. Nadiammai et al41 extract a

long list of features from the used dataset42 and compare, as

done in the first part of this paper (Table 3), different classi-

fiers such as, among the others, DTNB, JRIP, PART, RIDOR,

all providing about 95% accuracy, and SMO, assuring an

accuracy above 97%. Saravanan et al43 compare J48, Random

Forest, and Random Tree in the same operating environment

by using the same dataset and list of features presented in the

work of Nadiammai et al41 and propose to use a combination

of classifiers to enhance the performance, which is above the

99% in the best cases. The obtained results of these classifiers

TABLE 3 Percentage of Acc, TP, FN, TN, FP, and CI for Acc by varying
the applied classifier

Classifier Acc TP FN TN FP CI

1-NN 97.21 97 3 97.5 2.5 97.0785÷97.3565

3-NN 97.32 97.2 2.8 97.5 2.5 97.1890÷97.4618

CubicSVM 51.02 99.6 0.4 3 97 50.5976÷51.4428

DTNB 97.45 98.9 1.1 96 4 97.3225÷97.5887

J48 98.03 98.8 1.2 97.3 2.7 97.9186÷98.1532

Jrip 97.86 98.9 1.1 96.8 3.2 97.7407÷97.9851

LinearSVM 88.20 93.6 6.4 82.9 17.1 87.9372÷88.4824

NaiveBayes 89.68 99.7 0.3 79.7 20.3 89.4239÷89.9381

PART 98.06 99 1 97.2 2.8 97.9493÷98.1821

QuadraticSVM 83.63 90.9 9.1 76.4 23.6 83.3272÷83.9526

Random Forest 98.35 99.3 0.7 97.5 2.5 98.2503÷98.4651

Random Tree 97.56 97.7 2.3 97.4 2.6 97.4332÷97.6938

RBFNetwork 75.93 85.2 14.8 66.8 33.2 75.5766÷76.2992

RBFSVM 86.87 90.3 9.7 83.5 16.5 86.5908÷87.1616

Ridor 98.00 99.3 0.7 96.7 3.3 97.8899÷98.1261

SMO 88.19 93.5 6.5 82.9 17.1 87.9259÷88.4713

are very similar to the ones shown in Table 3. Enache et al44

propose a selection of features by using swarm intelligence

algorithms, such as artificial bee colony or particle swarm

optimization and evaluate the performance through the same

dataset used in the previous work.42

3 STATISTICAL FINGERPRINT-BASED
INTRUSION DETECTION SYSTEM—SF-IDS

3.1 Key ideas

This paper shares with the literature,36,37,45 and the other

papers mentioned in the previous section concerning SABID,

not only the idea of detecting something by using statistical

analysis. For instance “looking at simple statistical properties

of protocol messages, such as statistics of packet inter-arrival

times and of packets sizes”37 may be useful to perform mon-

itoring actions. “The key idea is that the information carried

by packets at the network layer, such as packet-size and

inter-arrival time between consecutive packets, are enough

to infer the nature of the application protocol that generated

those packets.”36 This sentence, referred in the work of Dusi

et al36 to tunnels, may be literally applied to malware in this

paper. We think that, observing the statistical features of a

specific IP traffic flow, we can get information about the mali-

cious (or not) nature of this flow. An IP traffic flow is defined

in this paper as the 5-tuple composed of the following fields

of the IP and TCP/UDP headers:

• IP source address (IP SA)

• IP destination address (IP DA)

• TCP/UDP source port

• TCP/UDP destination port

• Protocol



BOERO ET AL. 5

FIGURE 1 Statistical fingerprint-based intrusion detection system overall architecture

These fields are considered as 2-way (the inversion of

source and destination ports and addresses is considered as

1 single flow) in the tests in Section 5. This choice reduces

the number of flows per each trace recorded from the net-

work, and allows creating longer flows that are more robust

to the noise than default short flows created automatically by

hosts connected to the Internet. The field protocol defines the

protocol used in the data portion of the IP datagram. In prac-

tice it specifies the content of the IP packet information field.

The Internet assigned numbers authority maintains a list of

IP protocol numbers that was originally defined in the work

of Postel46 and is now defined through an online database

specified in the work of Reynolds.47

3.2 SF-IDS architecture

The overall architecture of the proposed IDS is depicted in

Figure 1. Figure 1 refers to a general-purpose architecture to

analyze traffic flows whose operative steps are detailed in the

following. Such architecture has not been implemented and

used to perform experiments for which we have applied a sub-

set of the components appearing in Figure 1 and, in particular,

the “packet analyzer” (object of Section of 3.3), “Malware

DB” (used for the training phase), and “Syslogger” (output

of the packet analyzer). The practical implementation of the

overall architecture in Figure 1 is one of the next steps of this

research activity.

Packets from/to the Internet traverse the external inter-

face (typically an ADSL/ATM interface) of the system and

are processed by a router to be properly forwarded. At this

level, if needed, some virtual interfaces may be attached

to allow sending/receiving packets through tunneling proto-

cols and/or traffic encryption. This allows establishing virtual

point-to-point (secure) connections with the aim of creating

virtual private networks (VPNs). Thus, different user sites

may appear to be part of a unique wide network. User appli-

cations, running in different locations, are enabled to commu-

nicate with each other and, possibly, share common resources

in the same way applications are hosted on co-located com-

puters. However, it is worth noting that the adoption of VPNs

only partially reduces the hazard to be victim of malware.

Whether a PC in the user LAN is infected by a malware, the

PC may easily infect other systems present in the LANs and

belonging to same VPN infrastructure. The IDS mechanisms

need to be adopted even in presence of secure and encrypted

links (tunnels) connecting different sites of the same enter-

prise. Furthermore, some malicious tunnels may represent the

media through which infected packets may be conveyed, as

mentioned in the previous section through the proper refer-

ences. The IP packets traversing the router are inspected by

a “packet analyzer (PA)” to detect possible harmful flows.

The PA exploits the features of a set of malwares stored in

the so called malware database. Whenever a malicious flow

is detected, its features are logged in the Syslogger subsys-

tem and, correspondingly, a new rule is compiled by the filter

builder and then added to the filter list (firewall filter list) of

the firewall. The new rule aims at blocking the just detected

malicious flow, thus preventing the related malware to access

the LAN through the Internal interface (commonly, an Ether-

net interface). It should be highlighted that, if the system has

more than one internal interface, each interface has its own

firewall filter list.

3.3 SF-IDS packet analyzer

The packet analyzer represents the most original part of our

work and the object of the performance evaluation. Figure 2

sketches its main components.



6 BOERO ET AL.

FIGURE 2 Block diagram of the packet analyzer

Incoming packets feed the “feature extractor,” which per-

forms 2 principal operations. The first one consists in the

identification of a traffic flow on the basis of the flow

definition provided before. The second operation is the extrac-

tion of a number of features, discussed in the next section,

from each flow. Under this perspective, each flow is uniquely

described by the vector Vf of its features. The Vf is the sta-

tistical fingerprint of the flow. The vector Vf is then passed

to a group of classifiers, each of them previously trained by

using known traffic traces (ie, the ground truth) to detect a

specific malware on the basis of a set of features. Each clas-

sifier makes its own decision: the flow is a malware or it is

not. Eventually, a decision maker (DM) merges the decisions

made by each classifier to produce the final decision regard-

ing the flow under analysis. Strategies adopted to make the

final decision are discussed in Section 5.4.

3.4 Statistical fingerprint: the vector of features

The 14 components (indicated as features) of the vector Vf
used to classify each flow are listed in Table 4. As said before,

the key idea is that the following features associated to each

flow are enough to infer the possible malicious nature of the

flow. The use of these features is coherent with the literature

in the field. Yen et al48, Crotti et al,49 and KDD42 use a larger

and different list, not strictly related to the features of flows.

Any change to the features used in the table does not require

any substantial change to SF-IDS. For this motivation we do

not perform any selection of features through principal com-

ponent analysis (PCA) in this paper. We prefer concentrating

on the main scheme we propose and to leave refinements for

further research.

3.5 SF-IDS classifiers

The algorithms used to distinguish normal from malicious

traffic on the basis of the set of features extracted from each

flow are machine learning-based classifiers. The following

TABLE 4 Used features for each flow as statistical fingerprint

Features Description

Num_Pack Number of packets

Tot_Byte_Flux Number of bytes

Flow_Duration Duration of the flow in seconds

Byte_Rate Byte rate

Packet_Rate Packet rate

Delta_Mean Average inter-arrival time of packets

Delta_Std Standard deviation of inter-arrival time

LE “Entropy” of the packet lengths‡

DPL Total number of subsets of packets having the

same length divided by the total number of

packets of the flow

First_Len Length of the first packet

Max_Len Length of the longest packet

Min_Len Length of the shortest packet

Mean_Len Average packet length

Std_Len Standard deviation of the packet length

The LE is calculated starting from the normalized occurrences of the packet

lengths. Specifically, being Li the number of times a packet has a length equal to

i, LE is computed as LE = −
∑1526

i=0

Li
N

log2

(
Li
N

)
, where N is the total number of

packets belonging to the flow.

supervised classifiers, coherently with the state of the art

presented in Section 2, have been tested to select the most

performant ones:

• Naive Bayes (NB);

• Linear SVM—the frontier between regions is a linear

function;

• Quadratic SVM—the frontier between regions is a

quadratic function;

• Cubic SVM—the frontier between regions is a cubic func-

tion;

• Radial basis functions (RBF) SVM;

• K-nearest neighbors—K-NN with K = 1, and K = 3;

• JRIP;

• Random forest;



BOERO ET AL. 7

• DTNB;

• PART;

• Ridor;

• SMO;

• J48;

• Random tree; and

• RBF network.

4 USED TRAFFIC AND PERFORMANCE
PARAMETERS

4.1 Used malware and normal traffic

The tests reported in the performance evaluation have been

performed by downloading traffic samples.50 Table 5 contains

the list of used malwares together with the overall number of

analyzed flows and packets. Each flow appearing in Table 5

under the label malware is not exclusively composed of mal-

ware affected packets, but it contains also not affected traffic.

Obviously the 2 components can be distinguished to allow

a correct performance evaluation. Table 5 includes also the

same quantities for the traffic that is not affected by malware

and is called normal traffic. In this case these traces are totally

malware free. Each malware has different features.

Cutwail is a botnet aimed at spamming.

Purple Haze is a botnet that records user activities. In

practice, it is a keylogger acting at kernel level.

Ramnit is a worm that has been used to get Facebook

passwords.

Tbot is a botnet used for DDoS attacks, bank frauds, and

cheats by using e-money (bitcoins).

Zeus is a botnet that widespreads a Trojan to infect com-

puters through phishing or false download actions

unconsciously performed by users. Its main func-

tion is online banking File Transfer Protocol (FTP)

account violation.

ZeroAccess is a Trojan that affects Microsoft Windows

operating systems. It is used to download other mal-

ware on the infected machine and is mostly involved in

bitcoin mining and click fraud. It may remain hidden

on a system by using several techniques.

AlienspyRAT is a Trojan that gives attackers the abil-

ity to gain complete remote control of a compro-

mised system. It can be used to collect a range of

system-specific data, including operating system ver-

sion, memory and RAM data, Java version number,

and other details, such as passwords and private infor-

mation.

Kuluoz is a Trojan that tries to steal passwords and sensi-

tive information. It can also download other malware

onto the infected PC.

Sality is a polymorphic file infector. It infects executable

files on local, removable, and remote shared drives. It

can communicate over a peer-to-peer (P2P) network

TABLE 5 Used malware and normal traffic

Malware Flows Packets

Cutwail 2347 35674

Purple Haze 7349 324709

Ramnit 25141 155973

Tbot 223 13048

Zeus 202 7443

ZeroAccess 350 2535

AlienspyRAT 1214 9010

Kuluoz 16894 179607

Sality 12939 250784

Normal Traffic

Normal Traffic 1 4969 833368

Normal Traffic 2 12552 3533925

Normal Traffic 3 23351 4428188

and has the purpose of relaying spam, compromising

web servers, and extruding data.

Normal traffic used in the tests has been captured by using

the tcpdump utility.

4.2 Performance evaluation parameters

The performance of the each classifier itemized in Section 3.5

has been evaluated by comparing the results of the classifica-

tion with the actual class of the flow. Under this perspective,

4 cases, listed in Table 2, can occur.

Corresponding quantities in percentage may be defined as

TN = NTN

NN
· 100, FP = NFP

NN
· 100, TP = NTP

NM
· 100, FN =

NFN

NM
· 100, being NN the overall number of analyzed normal

flows, NM the overall number of analyzed malware affected

flows, and NTN , NFP, NTP, and NFN the overall number of true

negatives, false positives, true positives, and false negatives,

respectively.

True positives and true negatives are the correct detec-

tion cases. False positives (false alarms) and false negatives

(missed detections) are the cases where the system fails,

although the impact of FPs and FNs on the overall per-

formance is very different. Consequently, the percentage of

correct decisions may be evaluated through the parameter

accuracy (Acc) defined as

Acc = NTN + NTP

NTOT
· 100 (1)

where NTOT = NN + NM is the overall number of flows.

5 PERFORMANCE EVALUATION

5.1 Tools

The tests have been performed by using a free machine learn-

ing software called WEKA,51–53 introduced in 1997 at the

University of Waikato, New Zealand. We have used ver-

sion 3.6.10. The WEKA is written in Java, supports standard

algorithms for data preprocessing, clustering, classification,



8 BOERO ET AL.

regression, visualization, and feature selection, and uses .Arff

file format. All data have to be available in this format to

be analyzed. Detailed WEKA characteristics are reported.53

All SF-IDS Classifiers listed in Section 3.5 are supported by

this tool.

5.2 Evaluation of single classifiers

The analysis has been performed taking into account the

entire set of flows in Table 5. Each single trace, both mal-

ware and normal, has been divided into 2 parts (50% of the

trace each). The first part of each trace has been used to com-

pose the file for the training phase, the second part to build

the file employed for the tests. The goal is to distinguish mal-

ware affected flows and normal traffic. Table 3 shows, for

each classifier in Section 3.5, the obtained accuracy and the

percentage of true positives, false negatives, true negatives,

and false positives. The last column of Table 3 contains also

the 95% confidence interval (CI) of the accuracy values, com-

puted through the known formula Acc±1.96 ·
√

Acc(1−Acc)
N

,

where N is the overall number of flows used for testing, taking

the values from Table 5, as indicated above. The confidence

interval may be simply computed in the same way also for

TP, FN, TN, and FP. A good number of classifiers is close

to 99% concerning the percentage of true positives (and, in

consequence, close to 1% concerning the percentage of false

negatives), but not all of them provide also satisfying results

of true negatives and false positives. In this view, from the

results reported in Table 3, it is possible to individuate the

most performant classifiers. To this goal we use the metric in

Equation 2 that minimizes the sum of the percentage of false

positives and false negatives.

min(FP + FN) (2)

The resulting 3 best classifiers are Random Forest, J48,

and PART.

5.3 Classifier performance to distinguish single
malware affected flows and normal traffic

The ability of the selected classifiers to correctly detect each

single malware has been also checked. Given the training

phase operated to get the results in Table 3, we have tested

the 3 classifiers by using the 50% of the traces of each mal-

ware (which contains, as said before, both affected and not

affected packets) not used for training. The performance of

Acc, TP, FN, TN, and FP (as well as the 95% confidence inter-

val of the accuracy) is shown in Tables 6, 7, and 8, respectively

for J48, PART, and Random Forest. All selected classifiers

offer excellent performance even if Random Forest is slightly

more efficient. It perfectly distinguishes Kuluoz, Tbot, and

ZeroAccess from normal traffic (100% accuracy) and, in par-

ticular, provides an accuracy of 97.78% for Cutwail. The J48

and PART get for the same malware an accuracy of 91.48%
and 90.46%, respectively. The performance of Random For-

est is again the best for Purplehaze: 99.95% against 98.53%

TABLE 6 Percentage of Acc, TP, FN, TN, FP, and CI for Acc using J48
classifier

J48
Malware Acc TP FN TN FP CI

AlienspyRAT 99.83 100 0 75 25 99.5127÷100

Cutwail 91.48 100 0 81.7 18.3 89.8853÷93.0789

Kuluoz 99.98 100 0 99.5 0.5 99.965÷100

Purplehaze 98.53 98.9 1.1 88 12 98.1416÷98.9196

Ramnit 96.74 100 0 68.8 31.2 96.4364÷97.0566

Sality 99.56 99.6 0.4 99.6 0.4 99.4072÷99.7272

Tbot 99.10 100 0 99.1 0.9 97.3649÷100

ZeroAccess 98.28 98.2 1.8 100 0 96.3625÷100

Zeus 99.00 100 0 98.5 1.5 97.0789÷100

TABLE 7 Percentage of Acc, TP, FN, TN, FP, and CI for Acc using
PART classifier

PART
Malware Acc TP FN TN FP CI

AlienspyRAT 99.83 100 0 75 25 99.5127÷100

Cutwail 90.46 97.8 2.2 82.1 17.9 88.7796÷92.1404

Kuluoz 99.94 99.9 0.1 100 0 99.8889÷99.9927

Purplehaze 93.41 93.4 6.6 94 6 92.6131÷94.2169

Ramnit 96.74 100 0 68.8 31.2 96.4364÷97.0566

Sality 99.35 98.7 1.3 99.7 0.3 99.1552÷99.5466

Tbot 99.10 80 20 100 0 97.3649÷100

ZeroAccess 98.85 98.8 1.2 100 0 97.2822÷100

Zeus 94.05 94.1 5.9 94 6 89.4493÷98.6695

TABLE 8 Percentage of Acc, TP, FN, TN, FP, and CI for Acc using
Random Forest classifier

Random Forest
Malware Acc TP FN TN FP CI

AlienspyRAT 99.83 100 0 75 25 99.5127÷100

Cutwail 97.78 99.5 0.5 95.8 4.2 96.9435÷98.6271

Kuluoz 100 100 0 100 0 100÷100

Purplehaze 99.94 99.9 0.1 100 0 99.8702÷100

Ramnit 96.73 100 0 68.8 31.2 96.428÷97.049

Sality 99.79 99.8 0.2 99.8 0.2 99.69÷99.9082

Tbot 100 100 0 100 0 100÷100

ZeroAccess 100 100 0 100 0 100÷100

Zeus 99.00 100 0 98.5 1.5 97.0789÷100

of J48 and 93.42% of PART. Concerning Zeus, Random For-

est and J48 allow getting an accuracy of 99%, PART of about

94%. The performance for AlienspyRAT and Ramnit is the

same for all the considered classifiers as well as, substantially,

for Sality.

5.4 Classifiers acting in parallel

A possible alternative to the use of a single classifier is the

exploitation of a bank of classifiers as shown in the packet

analyzer in Figure 2. Specifically, a group of different classi-

fiers act in parallel and communicate their decisions to 1 DM

block.



BOERO ET AL. 9

TABLE 9 Percentage of Acc, TP, FN, TN, FP, and CI for Acc obtained at
the output of the 3 decision makers (DMs)

DM Strategy Acc TP FN TN FP CI

Dominant 98.28 99.68 0.32 96.89 3.11 98.1735÷98.3931

Majority 98.28 99.25 0.75 97.33 2.67 98.1754÷98.3949

Unanimity 97.88 98.04 1.96 97.73 2.27 97.7637÷98.0069

The DM block can make the final decision about malware

affection or not in different ways. It can state that a flow is

malware affected either if at least 1 single classifier has taken

this decision (dominant), or following most decisions of the

single classifiers (majority), or if all single classifiers have

taken this decision (unanimity). The 3 classifiers selected

before (J48, PART, and Random Forest) have been used to

compose the mentioned bank of classifiers acting in parallel.

The results about accuracy, TP, FN, TN, and FP are reported

in Table 9 together with the 95% confidence interval of the

accuracy. Training and testing files are the same as in Section

5.2. Even if the reported percentage are very similar for all

the DMs, some remarks may be made. The “dominant” DM

maximizes the percentage of true positives (and consequently

minimizes the percentage of false negatives) with respect to

both the other 2 DMs (and this is expected) and the most per-

formant classifier Random Forest (see Table 3) that assures

TP and FN equal to 99.3% and 0.7%, respectively. The same

quantities for the “dominant” DM are 99.69% and 0.31%.

Even if the difference is not evident, the very slight improve-

ment means that there is an intervention of J48 and PART that

detect malware affection when Random Forest (rarely) fails.

The improvement of TP and FN is paid by a worst perfor-

mance concerning TN and FP. The decrease of TN happens

both with respect to the other DMs (again expected) and with

respect to the values got by Random Forest in Table 3.

Increasing the necessary number of malware decisions

made by single classifiers to assign a flow to the malware

class allows reducing the percentage of false positives (2.67%
for “majority” and 2.27% for “unanimity”) and, consequently,

increasing the percentage of true negatives (97.33% and

97.73%, respectively, for “majority” and “unanimity”) at cost

of FN and TP. Similarly as happens for “dominant” about TP
and FN, “unanimity” allows getting TN and FP values bet-

ter than the ones got by Random Forest in Table 3, again for

the intervention of J48 and PART, which mitigate the rare

erroneous decisions of Random Forest.

6 CONCLUSIONS

The paper proposes a network-based IDS called SF-IDS (sta-

tistical fingerprint-IDS) devoted to decide whether an IP flow

is malware affected or not. The SF-IDS is structured into

a training phase and a classification/decision phase. Both

phases are based on the definition and extraction of a group

of IP flows statistical parameters that represent the statistical

fingerprint. The key idea of the paper is that the statistical

fingerprint may help detecting the nature (malicious or not)

of each flow. The classification/decision phase consists of

a “feature extractor,” a bank of classifiers, and a DM that

merges the decisions of the classifiers. The performance eval-

uation traces a possible streamline in view of a future practical

implementation and it is structured as follows.

1. Evaluation of the single classifiers and choice of the best

ones. To perform this choice we have adopted as a metric

the sum of false alarms and missed detections, and we have

selected the schemes providing the minimum values. Ran-

dom Forest is the best one and also J48 and PART provide

excellent results. The selected schemes are very efficient

even if applied to each single malware. In particular, Ran-

dom Forest assures a null percentage of false negatives

and false positives for Kuluoz, Tbot, and ZeroAccess, and

a very close to null percentage for Sality and Zeus. Ran-

dom Forest also assures satisfying results for Cutwail. It

is very efficient to recognize AlienspyRAT and Ramnit

(100%TP - 0%FN), but it has some difficulties to iden-

tify normal traffic, often interpreted as these malwares

(75%TN-25%FP for AlienspyRAT and 68.8%TN-31.2%
for Ramnit).

2. Evaluation of the scheme including 3 classifiers (Ran-

dom Forest, J48, and PART acting in parallel) and a DM

that makes decisions on the basis of 3 different strategies:

“dominant”, “majority,” and “unanimity.” The choice

among the 3 DMs depends on a possibly adopted risk

function/performance tuning. For example, in this case,

the balance between missed detections and false alarms

we want to get: the “dominant” DM allows minimizing

missed detections at cost of false alarms; increasing the

number of classifiers necessary to classify a flow as a mal-

ware allows achieving better results of false alarms but

implies a performance decrease as concerns missed detec-

tions. The minimum percentage of false alarms is got by

“unanimity” DM.

The obtained results open the door to an actual development

of the software needed to implement the overall architecture

proposed in this paper.

ACKNOWLEDGEMENTS

The authors want to thank Dr Roberto Surlinelli, Chief Tech-

nical Director, and Mr Augusto Ottaviano, Chief Assistant, of

the Polizia di Stato, Italy, for their precious suggestions.

REFERENCES

1. Ye Y, Li T, Jiang Q, Wang Y. Cimds: adapting postprocessing techniques

of associative classification for malware detection. IEEE Trans Syst, Man,
Cybern, C: Appl Rev. 2010;40(3):298–307.

2. Cerf VG. Defense against the dark arts. IEEE Internet Comput. 2012;16(1):

96–97 .

3. Kim H, Shin KG, Pillai P. Modelz: monitoring, detection, and analysis of

energy-greedy anomalies in mobile handsets. IEEE Trans Mobile Comput.
2011;10(7):968–981.



10 BOERO ET AL.

4. Chandramohan M, Tan HBK. Detection of mobile malware in the wild.

Computer. 2012;45(9):65–71.

5. La Polla M, Martinelli F, Sgandurra D. A survey on security for mobile

devices. IEEE Commun Surveys Tuts. 2013;15(1):446–471.

6. Fernandes E, Crispo B, Conti M. Fm 99.9, radio virus: exploiting fm radio

broadcasts for malware deployment. IEEE Trans Inf Forensics Security.

2013;8(6):1027–1037.

7. Gianvecchio S, Xie M, Wu Z, Wang H. Humans and bots in Internet chat:

measurement, analysis, and automated classification. IEEE/ACM Trans Netw.

2011;19(5):1557–1571.

8. Yerima SY, Sezer S, McWilliams G. Analysis of Bayesian

classification-based approaches for android malware detection. IET Inform
Secur. 2014;8(1):25–36.

9. Peng W, Li F, Zou X, Wu J. Behavioral malware detection in delay tolerant

networks. IEEE Trans Parallel Distrib Syst. 2014;25(1):53–63.

10. Nakayama H, Kurosawa S, Jamalipour A, Nemoto Y, Kato N. A dynamic

anomaly detection scheme for AODV-based mobile ad hoc networks. IEEE
Trans Veh Technol. 2009;58(5):2471–2481.

11. Sabahi F, Movaghar A. Intrusion detection: a survey. 3rd International Con-
ference on Systems and Networks Communications, 2008. ICSNC’08, IEEE,

Sliema, Malta; 2008:23–26.

12. Fukunaga K. Introduction to Statistical Pattern Recognition. 2nd ed. San

Diego, CA, USA: Academic Press Professional, Inc.; 1990.

13. Duda RO, Hart PE, Stork DG. Pattern Classification. (2nd Edition).

Chichester, West Sussex, England: Wiley-Interscience; 2000.

14. McCallum A, Nigam K. A comparison of event models for naive bayes

text classification. AAAI-98 Workshop on Learning for Text Categorization,

vol. 752, Citeseer, Madison, Wisconsin; 1998:41–48.

15. Langley P, Iba W, Thompson K. An analysis of Bayesian classifiers. AAAI,

vol. 90, San Jose, California; 1992:223–228.

16. Hall MA, Frank E. Combining naive bayes and decision tables. FLAIRS
Conference, vol. 2118, Coconut Grove, Florida, USA; 2008:318–319.

17. Gaines BR, Compton P. Induction of ripple-down rules applied to modeling

large databases. J Intell Inf Syst. 1995;5(3):211–228.

18. Platt JC. Fast training of support vector machines using sequential mini-

mal optimization. Advances in Kernel Methods - Support Vector Learning.

Cambridge, MA, USA: MIT Press; 1998:41–65. http://research.microsoft.

com/apps/pubs/default.aspx?id=68391.

19. Quinlan JR. C4.5: Programs for Machine Learning. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc.; 1993.

20. Cohen WW. Fast effective rule induction. Proceedings of the Twelfth Inter-
national Conference on Machine Learning, Tahoe City, California, USA;

1995:115–123.

21. Frank E, Witten IH. Generating accurate rule sets without global optimiza-

tion. ICML, vol. 98, Madison, Wisconsin, USA; 1998:144–151.

22. Frank E. Fully supervised training of gaussian radial basis function net-

works in WEKA. Technical Report, vol. 4, Department of Computer Science,

University of Waikato, Waikato 0800, New Zeland; 2014.

23. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.

24. Blount JJ, Tauritz DR, Mulder SA. Adaptive rule-based malware detec-

tion employing learning classifier systems: a proof of concept. 2011 IEEE
35th Annual Computer Software and Applications Conference Workshops
(COMPSACW), IEEE, Munich, Germany; 2011:110–115.

25. Zhuang W, Ye Y, Chen Y, Li T. Ensemble clustering for internet

security applications. IEEE Trans Syst, Man, Cybern, C: Appl Rev.

2012;42(6):1784–1796.

26. Shan Z, Wang X. Growing grapes in your computer to defend against

malware. IEEE Trans Inf Forensics Security. 2014;9(2):196–207.

27. O’Kane P, Sezer S, McLaughlin K, Im EG. SVM training phase reduc-

tion using dataset feature filtering for malware detection. IEEE Trans Inf
Forensics Security. 2013;8(3):500–509.

28. Santos I, Brezo F, Sanz B, Laorden C, Bringas PG. Using opcode sequences

in single-class learning to detect unknown malware. IET Inform Secur.

2011;5(4):220–227.

29. Cesare S, Xiang Y, Zhou W. Malwise – an effective and efficient classifi-

cation system for packed and polymorphic malware. IEEE Trans Comput.
2013;62(6):1193–1206.

30. Alhomoud A, Munir R, Disso JP, Awan I, Al-Dhelaan A. Perfor-

mance evaluation study of intrusion detection systems. The 2nd Inter-
national Conference on Ambient Systems, Networks and Technologies
(ANT-2011) / The 8th International Conference on MobileWeb Informa-
tion Systems (MobiWIS 2011). Procedia Comput Sci.. 2011;5:173–180.

http://www.sciencedirect.com/science/article/pii/S1877050911003498.

doi:10.1016/j.procs.2011.07.024.

31. Cha SK, Moraru I, Jang J, Truelove J, Brumley D, Andersen DG.

Splitscreen: enabling efficient, distributed malware detection. J Commun
Netw. 2011;13(2):187–200.

32. Aydın MA, Zaim AH, Ceylan KG. A hybrid intrusion detection system design

for computer network security. Comput Electr Eng. 2009;35(3):517–526.

33. Om H, Kundu A. A hybrid system for reducing the false alarm rate of

anomaly intrusion detection system. 2012 1st International Conference on
Recent Advances in Information Technology (RAIT), IEEE, Dhanbad, India;

2012:131–136.

34. Karthick RR, Hattiwale VP, Ravindran B. Adaptive network intrusion detec-

tion system using a hybrid approach. 2012 Fourth International Conference
on Communication Systems and Networks (COMSNETS), IEEE, bangalore,

India; 2012:1–7.

35. Elbasiony RM, Sallam EA, Eltobely TE, Fahmy MM. A hybrid net-

work intrusion detection framework based on random forests and weighted

k-means. Ain Shams Eng J. 2013;4(4):753–762.

36. Dusi M, Crotti M, Gringoli F, Salgarelli L. Tunnel hunter: detect-

ing application-layer tunnels with statistical fingerprinting. Comput Netw.

2009;53(1):81–97.

37. Aiello M, Mongelli M, Papaleo G. DNS tunneling detection through statis-

tical fingerprints of protocol messages and machine learning. Int J Commun
Syst. 2015;28(14):1987–2002.

38. Nakayama H, Jamalipour A, Kato N. Network-based traitor-tracing technique

using traffic pattern. IEEE Trans Inf Forensics Security. 2010;5(2):300–313.

39. Mohammad MN, Sulaiman N, Muhsin OA. A novel intrusion detection

system by using intelligent data mining in WEKA environment. Procedia
Comput Sci. 2011;3:1237–1242.

40. Zamani M, Movahedi M. Machine learning techniques for intrusion detec-

tion. arXiv preprint arXiv:1312.2177; 2013.

41. Nadiammai GV, Hemalatha M. Perspective analysis of machine learning

algorithms for detecting network intrusions. 2012 Third International Con-
ference on Computing Communication Networking Technologies (ICCCNT),
Tamilnadu, India; 2012:1–7.

42. Kdd cup 1999 data. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.

html. Accessed September 21, 2015

43. Saravanan S, Vijay Bhanu S, Chandrasekaran R. Study on classifi-

cation algorithms for network intrusion systems. J Commun Comput.
2012;9(11):1242–1246.

44. Enache AC, Patriciu VV. Intrusions detection based on support vector

machine optimized with swarm intelligence. 2014 IEEE 9th International
Symposium on Applied Computational Intelligence and Informatics (SACI),
Timisoara, Romania; 2014:153–158.

45. Nakayama H, Jamalipour A, Kato N. Network-based traitor-tracing technique

using traffic pattern. IEEE Trans Inf Forensics Security. 2010;5(2):300–313.

46. Postel J. Rfc 790assigned numbers; 1981.

47. Reynolds J. Assigned numbers: Rfc 1700 is replaced by an on-line database;

2002.

48. Yen TF, Huang X, Monrose F, Reiter MK. Browser fingerprinting from

coarse traffic summaries: techniques and implications. Proceedings of the
6th International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, DIMVA ’09. Springer-Verlag, Berlin, Heidelberg;

2009:157–175.

49. Crotti M, Dusi M, Gringoli F, Salgarelli L. Traffic classification

through simple statistical fingerprinting. SIGCOMM Comput Commun Rev.

2007;37(1):5–16. http://doi.acm.org/10.1145/1198255.1198257. Accessed

September 21, 2015

http://research.microsoft.com/apps/pubs/default.aspx?id=68391
http://research.microsoft.com/apps/pubs/default.aspx?id=68391
http://www.sciencedirect.com/science/article/pii/S1877050911003498
http://dx.doi.org/10.1016/j.procs.2011.07.024. \ignorespaces 
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://doi.acm.org/10.1145/1198255.1198257


BOERO ET AL. 11

50. www.mediafire.com/?a49l965nlayad. Accessed September 20, 2015

51. WEKA data mining machine learning software. http://www.cs.waikato.ac.

nz/ml/weka/.

52. Dash RK. Selection of the best classifier from different datasets using

WEKA. International Journal of Engineering Research and Technology.

2013;2(3) (March-2013). ESRSA Publications, 2013, Louvian-la-Neuve,

Begium.

53. Nguyen HA, Choi D. Application of data mining to network intru-

sion detection: classifier selection model. Challenges for Next Generation
Network Operations and Service Management. Springer, Beijin, China;

2008:399–408.

How to cite this article: Boero, L., Cello, M.,

Marchese, M., Mariconti, E., Naqash, T., and

Zappatore, S. (2016), Statistical fingerprint-based

intrusion detection system (SF-IDS). Int. J. Commun.
Syst., doi: 10.1002/dac.3225

www.mediafire.com/?a49l965nlayad
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://dx.doi.org/10.1002/dac.3225

	Statistical fingerprint-based intrusion detection system (SF-IDS)
	Abstract
	Introduction
	State ofxmltex ?> the art
	Machine learning-based classifiers
	Misuse andxmltex ?> statistical analysis based intrusion detection systems

	Statistical fingerprint-based intrusion detection system—sf-ids
	Key ideas
	SF-IDS architecture
	SF-IDS packet analyzer
	Statistical fingerprint: thexmltex ?> vector ofxmltex ?> features
	SF-IDS classifiers

	Used traffic andxmltex ?> performance parameters
	Used malware andxmltex ?> normal traffic
	Performance evaluation parameters

	Performance evaluation
	Tools
	Evaluation ofxmltex ?> single classifiers
	Classifier performance toxmltex ?> distinguish single malware affected flows andxmltex ?> normal traffic
	Classifiers acting inxmltex ?> parallel

	Conclusions
	References




