
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 3, MARCH 2019 515

Dynamic Switch Migration in Distributed
Software-Defined Networks to Achieve

Controller Load Balance
Yang Xu, Member, IEEE, Marco Cello , I-Chih Wang, Anwar Walid, Fellow, IEEE, Gordon Wilfong,

Charles H.-P. Wen , Member, IEEE, Mario Marchese , Senior Member, IEEE,
and H. Jonathan Chao, Fellow, IEEE

Abstract— Multiple distributed controllers have been used in
software-defined networks (SDNs) to improve scalability and
reliability, where each controller manages one static partition
of the network. In this paper, we show that dynamic mapping
between switches and controllers can improve efficiency in man-
aging traffic load variations. In particular, we propose balanced
controller (BalCon) and BalConPlus, two SDN switch migration
schemes to achieve load balance among SDN controllers with
small migration cost. BalCon is suitable for the scenarios where
the network does not require a serial processing of switch
requests. For other scenarios, BalConPlus is more suitable, as it
is immune to the switch migration blackout and does not cause
any service disruption. Simulations demonstrate that BalCon
and BalConPlus significantly reduce the load imbalance among
SDN controllers by migrating only a small number of switches
with low computation overhead. We also build a prototype
testbed based on the open-source SDN framework RYU to verify
the practicality and effectiveness of BalCon and BalConPlus.
Experiment confirms the results of the simulations. It also
shows that BalConPlus is immune to switch migration blackout,
an adverse effect in the baseline BalCon.

Index Terms— Software-defined networking, distributed con-
trollers, load balancing, switch migration.

I. INTRODUCTION

SOFTWARE Defined Networking (SDN) is a promising
networking technology that enables network innovation

and provides network operators more control of the network
infrastructure. It decouples the control plane logic from the
data plane by moving the networking control functions from

Manuscript received May 5, 2018; revised January 07, 2019; accepted
January 11, 2019. Date of publication February 5, 2019; date of current version
February 14, 2019. This paper was presented in part at the IEEE International
Conference on Cloud Engineering 2017 [1].

Y. Xu and H. J. Chao are with the Department of Electrical and Computer
Engineering, New York University, New York City, NY 11201 USA (e-mail:
yang@nyu.edu; chao@nyu.edu).

M. Cello is with Rulex Inc., 16122 Genoa, Italy.
I.-C. Wang and C. H.-P. Wen are with the Department of Electrical and

Computer Engineering, National Chiao Tung University, Hsinchu 30010,
Taiwan.

A. Walid and G. Wilfong are with Nokia Bell Labs, Murray Hill, NJ 07974
USA.

M. Marchese is with the Department of Naval, Electrical, Electronic and
Telecommunications Engineering, University of Genoa, 16126 Genoa, Italy.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2019.2894237

the forwarding devices (e.g., switches/routers) to the logi-
cally centralized controller, so that the network functions can
be implemented by software. However, as the number of
switches1 in an SDN increases, the centralized controller may
fail to process all the requests coming from the switches.
Moreover, because of the single point of failure, malfunction
of the SDN controller can bring down the whole network.
Recent works have proposed using multiple physically dis-
tributed SDN controllers to improve system scalability and
reliability, while preserving the simplicity of a logically cen-
tralized system [2]–[4].

One of the problems of existing multicontroller architectures
is their static mapping between SDN switches and controllers
which makes the control plane unable to adapt to traffic
variation. As suggested in [5], real networks may exhibit
huge variations in both temporal dimensions (traffic varies
at different time of the day or even in a shorter time scale)
and spatial dimensions (traffic varies at different locations
of the network) [6]. If the SDN switch-controller mapping
is static, the huge variations may result in imbalance among
the controllers, i.e., some overloaded and some underutilized.
An overloaded controller will response to switch requests with
increased latency, deteriorating the quality of user experience.
Therefore, dynamic mapping between the switches and the
controllers can overcome imbalance and reduce the connection
setup latency, by migrating some switches from an over-
loaded controller to other controllers with light load. However,
the dynamic switch migration does incur some overhead due
to the four-phase switch migration protocol [7] that causes
service interruption (detailed in Section V).

Although some works have been proposed to address the
switch migration issue among multiple controllers, there is
a lack of systematic method to quantitatively identify which
switches to be migrated for better controller load balance.

The contributions of this paper in theoretical, algorithmic
and implementation aspects are summarized below:

- We show that dynamic mapping between SDN switches
and controllers provides system elasticity and efficiency
under varied traffic loads. Migration of switches among
the controllers to achieve controller load balancing has

1Unless specifically noted, we only consider switches as the forwarding
devices in this paper. The conclusion made in the paper can be simply
extended to scenarios where other devices (e.g., firewalls) exist.

0733-8716 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-0480-719X
https://orcid.org/0000-0003-4623-9941
https://orcid.org/0000-0002-9626-3483

516 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 3, MARCH 2019

been modeled as an optimization problem and shown that
it is NP-complete;

- Since the computational complexity of the optimal solu-
tion of the model is prohibitively high, we propose
BalCon, a heuristic solution that is able to achieve
load balancing among the controllers through switch
migration;

- We analyze the overhead incurred in switch migration
and discuss a service disruption problem during the
migration, called switch migration blackout. BalConPlus,
an improved version of BalCon, is proposed to eliminate
the blackout by steering new arriving flows away from
the switches that are being migrated. BalConPlus requires
only minor changes from the baseline BalCon without
incurring much additional implementation complexity;

- We implement BalCon and BalConPlus in Matlab. Simu-
lation results show that load imbalance among controllers
(expressed as variance of the load) is reduced by 40% and
the load of the congested controller is reduced by 19%
with a relatively low number of SDN switches migrated;

- We prototype a testbed based on RYU (a popular SDN
controller written in python [8]) to verify the practicality
and effectiveness of BalCon and BalConPlus. Through
experiment results, we demonstrate that BalConPlus is
immune to the blackout;

- The operation of BalCon and BalConPlus needs to know
some system parameters in advance (e.g., the cost for
computing a path and the cost for installing a flow entry
to a switch) to predict migration results. We propose an
automated parameter measurement and calculation frame-
work to run BalCon and BalConPlus in our prototyped
testbed.

BalCon and BalConPlus can be used in large scale data
center networks, carrier networks, or enterprise networks that
have a large number of network devices (such as switches,
firewalls, and Intrusion Detection Systems (IDS)) controlled
by multiple controllers to achieve controller load balance.
In particular, BalCon can be used when the network does
not require serial processing of switch requests, since such a
network will not have the switch migration blackout problem
(details are discussed in Section V). For networks that require
serial processing of switch requests, BalConPlus is more
suitable as it can steer new flows away from the switches
that are being migrated to avoid service disruption.

The rest of the paper is organized as follows: Section II
presents the motivations of our work. Section III presents the
system model. Section IV presents the design and the details
of BalCon. Section V discusses the switch migration blackout
problem and presents BalConPlus. In Section VI we evaluate
the performance of BalCon and BalConPlus using Matlab
simulations. Section VII presents a prototype testbed with
RYU controller and detailed experiment results. Section VIII
reviews prior related works. Conclusions are in Section IX.

II. MOTIVATIONS

An SDN network is composed of SDN switches and a log-
ically centralized SDN controller. Each SDN switch processes

Fig. 1. SDN controller load imbalance scenario.

and delivers packets according to rules stored in its flow table
(forwarding state), whereas the SDN controller configures the
forwarding state of each switch using a standard protocol
(e.g., OpenFlow [9]). Traffic rules, representing the forwarding
state, are installed in SDN switches when a new flow arrives.2

In order to overcome the scalability issues of a single
centralized controller, several approaches have been proposed
in the literature. One of the most effective methods is the use of
distributed controllers. Existing distributed controller solutions
still suffer from the static mapping between SDN switches and
controllers, limiting the capability of dynamic load adaptation.

Let’s briefly explain the reactive mode behavior in SDN
using an example in Figure 1, where the network is divided
into two domains and each of them is controlled by a con-
troller. Assume that a new flow f1 generated by host H1

arrives at switch S1. S1 doesn’t have any rule associated
with the flow and generates a “packet-in”3 to controller C1

(i.e., the first red arrow in step a©). C1 then computes the
route (i.e., step b© in blue) and installs the flow rules on SDN
switches controlled by itself (i.e., the green arrows to S1 and
S2 in step c© by assuming that the forwarding path of the
flow is S1 → S2 → the second domain). When the flow
arrives at S5, the switch doesn’t have any rule associated with
the flow and, consequently, sends a packet-in request to C2

that computes the flow’s path and installs the flow rules on
S5 and S6 (assuming that the forwarding path of the flow in
the second domain is S5 → S6).

Suppose now that due to the traffic variations, a large
number of new flows arrive to the network and the current
traffic pattern is depicted in Figure 1. In particular:

- host H1 generates 30 new flows/second to H3, which
are routed through S1 → S3 → H3 (green arrows);

- host H2 generates 35 new flows/second to H6, which
are routed through S2 → S5 → S6 → H6 (red arrows);

2This method is known as “reactive” mode. A less-used and less-effective
method is “proactive” mode in which the controller installs rules beforehand.

3When a packet does not match any of the existing rules inside an SDN
switch, the default policy is to send a copy of that packet up to the controller.
This “packet sent to the controller” message is called, in OpenFlow-parlance,
a packet-in [10].

XU et al.: DYNAMIC SWITCH MIGRATION IN DISTRIBUTED SDNs 517

Fig. 2. Controller load balance is improved after switch migrations.

- host H8 generates 20 new flows/second to H2, which
are routed through S8 → S7 → S4 → S2 → H2

(blue arrows).
At this point, we want to ask what are the computational

burdens of controllers C1 and C2 due to the instantiation of
the new flows. Suppose that the path computation for a single
flow requires α units of load, whereas the rules installation
of a single flow in a single switch requires β units of load.
At controller C1:

- the green flows generate 30α units for path computation
and (30 + 30)β units for rules installation at S1 and S3;

- the red flows generate 35α units for path computation
and 35β units for rules installation at S2;

- the blue flows generate 20α units for path computation
and (20 + 20)β units for rules installation at S4 and S2.

At controller C2:
- the red flows generate 35α units for path computation

and (35 + 35)β units for rules installation at S5 and S6;
- the blue flows generate 20α units for path computation

and (20 + 20)β units for rules installation at S8 and S7.
If we assume α = 1 and β = 0.1,4 we obtain:

LC1 = (30 + 35 + 20)α + (30 + 55 + 30 + 20)β
= 98.5 units/s.

LC2 = (35 + 20)α + (35 + 35 + 20 + 20)β = 66 units/s.

In the aforementioned example, the load between controllers
C1 and C2 is highly unbalanced. If we have the capability to
dynamically shrink or enlarge the SDN domains or partitions
through a proper switch migration, we can obtain the new map-
ping between controllers and switches in Figure 2. S2 and S4

are now part of the second domain and controlled by C2. The
new controllers’ load are now:

LC1 = (30)α + (30 + 30)β = 36 units/s.

LC2 = (35 + 20)α + (55 + 20 + 35 + 35 + 20 + 20)β
= 73.5 units/s.

Therefore, we obtained a significant reduction of the controller
load at C1 (63%) compared to a relatively small increase of
the controller load at C2 (11%).

4Here we consider the path computation load, ten times larger than the rules
installation load. In Section VII-C, an automated parameter measurement and
calculation mechanism is presented.

As explained in [5], using real measurements of a pro-
duction datacenter, Benson et al. [6] found that there are
1-2 orders of magnitude difference between peak and median
flow arrival rates at the switch: peak flow arrival rate can be up
to 300M/s with the median rate between 1.5M/s and 10M/s.
Assuming that each controller can manage up to 2M/s as flow
arrival rate, it requires only 1-5 controllers to process the
median load, but 150 for peak load. If we use static mapping,
each controller needs to have the capacity to process the
peak flow arrival (worst-case situation). If we have a dynamic
mapping, the capacity of each controller can be lowered, since
the peak of different partitions (domains) usually will not
occur at the same time due to multiplexing and sharing effect.

Motivated by the above observations, we seek to answer
our key question: how to dynamically select and migrate
switches from the domain of one controller to another to
balance controller load? The answer will largely depend on
the complexity and cost of the switch migration process.

We first develop optimal controller load balancing (OCLB)
problem in SDN multicontroller scenarios, and prove, how-
ever, that it is an NP-Complete problem. We then model
the OCLB problem as a graph partitioning problem and
develop BalCon and BalConPlus: two effective algorithms for
load adaptation among SDN controllers through SDN switch
migrations.

III. MODELING OF CONTROLLER LOAD

BALANCING PROBLEM

A. System Model

The objective of this section is to find an appropriate model
that takes into account the flow arrival dynamics at each
SDN switch and relate them to the computational load at
each SDN controller. We then formalize the Controller Load
Balancing (CLB) problem into an optimization one.

An SDN scenario is composed of a set S of SDN switches,
Si ∈ S, managed by a set C of SDN controllers, Cm ∈ C.
In accordance with prior works, we cannot assume predictable
traffic or well-known traffic patterns among the SDN switches,
but we can monitor the traffic load during runtime. Therefore,
we indicate with fo,Si the current arrival rate of new flows at
SDN switch Si from outside the SDN network, with fSi,o

the current arrival rate of new flows that leave the SDN
network from switch Si, whereas with fSi,Sj we indicate the
current arrival rate of new flows traversing the link between
the two connected SDN switches Si and Sj . In other words,
fSi,Sj represents the current arrival rate of new flows at the
SDN switch Sj coming from SDN switch Si. Referring to
Figure 1 we have: fo,S1 = 30, fo,S2 = 35, fo,S8 = 20,
fS3,o = 30, fS2,o = 20, fS6,o = 35, fS1,S3 = 30, fS2,S5 = 35,
fS4,S2 = 20, fS5,S6 = 35, fS7,S4 = 20, fS8,S7 = 20.

As shown before, the load LCm at controller Cm is com-
posed of three main components: the path computation load of
new flows arriving from outside the SDN network (e.g., green
arrow H1 → S1 and red arrow H2 → S2 in Figure 1); the
path computation load of the flows arriving from another SDN
domains (e.g., blue arrow S7 → S4 in Figure 1); the rule

518 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 3, MARCH 2019

installation load at each switch controlled by Cm for all flows
traversing the domain controlled by Cm.

Definition 1: - Path Computation Load for External Flows
- When a batch of flows arrive at Si from outside the network
with a rate of fo,Si , they generate a computational load due
to the path computation at the SDN controller of Si equal to:

K(fo,Si) (1)

Definition 2: - Path Computation Load of flows from Other
SDN Domains - When a batch of flows arrive at Si from Sj ,
a switch controlled by another SDN controller, with a rate
of fSj,Si , they generate a computational load due to the path
computation at the SDN controller of Si equal to:

K(fSj ,Si) (2)

The computational load at SDN controller necessary to per-
form path computation is dependent on the arrival rate of flows
through a function K. The definition of the function K is not
the objective of this work.

Definition 3: - Rules Installation Load - The computational
load at the controller due to rules installation in switch Si is
equal to:

∑

Sj∈S
G(fSi,Sj) + G(fSi,o) (3)

Equation 3 expresses the amount of flows that are traversing Si

going to other switches or out of the SDN network. Function
G maps the the flow arrival rate at Si to the computational
load at the SDN controller needed for rules installation.

Definition 4: The set of SDN switches controlled by SDN
controller Cm is denoted by Pm.

The set S is then partitioned in |C|-partitions, with Pm ⊂ S,
Pm ∩ Pn = ∅, n �= m.

Definition 5: The overall computational load at SDN Con-
troller Cm (LCm) is computed as:

LCm �
∑

Si∈Pm

K(fo,Si) +
∑

Sj /∈Pm

Si∈Pm

K(fSj ,Si)

+
∑

Si∈Pm
Sj∈S

G(fSi,Sj) +
∑

Si∈Pm

G(fSi,o) (4)

Overloading the SDN controller reduces its responsiveness
and causes a performance degradation since the flows will
experience an unexpected latency.

Definition 6: An SDN controller is overloaded or congested
when its overall computational load is:

LCm > L (5)

where L that indicates the maximum computational load
tolerated at each SDN controller.

When congestion occurs a migration procedure is needed
to reduce overload. In particular, starting from a partition
(P1, . . . ,P|C|) for which at least one controller, Cm, the con-
dition LCm > L holds, we need to find a new partition
(P ′

1, . . .P ′
|C|) such that the SDN controller load LCm ≤

L, Cm ∈ C.

Fig. 3. The SDN network scenario of Figure 1 as graph partitioning problem.

The CLB problem can be expressed as a mathematical
optimization problem which we call the Optimal CLB (OCLB)
problem, and it is defined as follows:

Definition 7: - OCLB Problem.

min
P1,...,P|C|

max
Cm∈C

LCm ;

subject to Pm ∩ Pm = ∅, m �= n;⋃
Pm = S. (6)

B. OCLB as Graph Partitioning Problem

The OCLB problem can be expressed as a partitioning
problem on a graph and the computation of LCm can be
induced directly on the graph. In particular, we represent the
SDN network as a directed edge-weighted and vertex-weighted
graph G(S, E) in which SDN switches are the vertices with
weights l(Si), Si ∈ S and edges E = {(Si, Sj) : Si, Sj ∈
S, l(Si, Sj) > 0}, are the connections among SDN switches.
l(Si, Sj) is the edge weights of (Si, Sj). That is

l(Si) = K(fo,Si) +
∑

Sj∈S
G(fSi,Sj) + G(fSi,o); (7)

l(Sj , Si) = K(fSj ,Si). (8)

The overall load at Cm, denoted by LCm , is then the sum of
the weights of the vertices belonging to its partition plus the
sum of weights of the edges directed to the partition of Cm.
Specifically:

LCm =
∑

Si∈Pm

l(Si) +
∑

Sj /∈Pm

Si∈Pm

l(Sj, Si). (9)

Note that Equation 9 is just another expression for
Equation 4.

Figure 3 is a representation of Figure 1 as a graph par-
titioning problem. For example, the vertex weight of S1

represent the computational load “brought” by S1 to C1.
In particular l(S1) = 33, which is the sum of K(fo,S1) = 30
(30 flows/s) and the rule installation for the flows going to
S3 G(fS1,S3) = 3.5

5For simplicity here we consider the functions K and G as linear functions
of the rate: K(rate) = rate, G(rate) = rate/10.

XU et al.: DYNAMIC SWITCH MIGRATION IN DISTRIBUTED SDNs 519

Refering to the same figure we get:

LC1 = l(S1) + l(S2) + l(S3) + l(S4) + l(S7, S4)
= 33 + 40.5 + 3 + 2 + 20 = 98.5 units/s.

LC2 = l(S5) + l(S6) + l(S7) + l(S8) + l(S2, S5)
= 3.5 + 3.5 + 2 + 22 + 35 = 66 units/s.

C. NP-Completeness Proof

We have proved that the OCLB problem is an NP com-
plete problem. Details of the proof are omitted due to
space limitations. The complete proof can be found here:
NP-completeness Proof.6

IV. BALCON ALGORITHM

An optimal SDN switch migration is impractical due to
its computational complexity (i.e., OCLB problem is NP-
complete) and could lead to undesirable excessive switch
migrations. A more practical approach should involve incre-
mental adjustment of the switch partitions, i.e., only a small
number of SDN switches are migrated.

In this section, we propose Balanced Controllers (BalCon),
an algorithmic solution designed to tackle and reduce the
load imbalance among SDN controllers through a proper SDN
switch migration. The key observation behind BalCon is that
an effective switch migration can be based on analysis of
the communication patterns of the SDN switches. The switch
migration should be at the granularity of clusters: switches
with strong connections7 should always be assigned to the
same controller.

BalCon is an heuristic algorithm which operates during the
network runtime and is able to detect and solve congestion at
the SDN controllers through proper SDN switch migrations.
BalCon can be implemented as a northbound application of
the SDN controller (more details are available in Section VII).
BalCon consists of three phases, as summarized below:

1) Monitoring and congestion detection: During the net-
work operation, BalCon continuously monitors the con-
gestion level at each SDN controller. An SDN controller,
Cm, is considered congested when LCm reaches a
predetermined threshold. BalCon then computes a list of
SDN switches that may be migrated. The list is ordered
by a priority computed using a pre-determined metric.
For example, the SDN switches that are observing a
rapid increase of new flows could get high priority since
they could rapidly overload the SDN controller with
packet-ins.

2) Clustering and migration evaluation: Starting from the
SDN switches in the priority list, BalCon analyzes the
traffic pattern among SDN switches to find clusters of
heavily connected switches (discussed below).

3) Cluster migration: When the best cluster is found and
the migration is evaluated, the SDN switches belonging
to the cluster are migrated to the new SDN controller.

6https://marcocello.github.io/pubs/IC2E2017-BalCon-Proof.pdf
7We consider the relative density of the cluster [11].

Algorithm 1 BalCon

Input: Edge- and node-weighted graphs G(S, E),
congested SDN controller Cm;

1 Pm: set of SDN switches controlled by the congested
SDN controller Cm;

2 A = ComputeStartingSwitchesList(Cm)
3 foreach Si ∈ A do
4 T = {Si};
5 alternatives =

alternatives∪ComputeMigrationAlternatives(T);
6 while 1 do
7 newT = IncreaseCluster(T);
8 if size(T) > mcs‖ newT = T then
9 break;

10 T = newT ;
11 alternatives = alternatives ∪

ComputeMigrationAlternatives(T);

12 [T 0, Target SDN controllero] ←
EvaluateMigrationAlternatives(alternatives);

The algorithm we propose is substantially based on the
iteration of three functions: IncreaseCluster in which the
cluster is expanded; ComputeMigrationAlternatives in
which the migrations to different target SDN controllers of
the selected cluster are evaluated (producing the “migration
alternatives” or simply called “alternatives” in the sequel);
Evaluate-BestMigrationAlternative in which given a list
of alternatives, the best alternative (based on some criteria
described in the following) is computed. The algorithm is
shown in Algorithm 1.

From the set Pm (SDN switches controlled by the con-
gested SDN controller Cm), the algorithm extracts a sub-
set list A (StartingSwitch List) that contains the starting
nodes used for the cluster construction (line 2). A could be
computed, for example, by looking for the SDN switches
that have a significant increase in flow arrival rate. The
first SDN switch belonging to A is selected and inserted
in the empty cluster T (Line 4). The migration alterna-
tives of the SDN switches belonging to T are computed
through ComputeMigrationAlternatives. The algorithm,
subsequently, executes a while loop in which the cluster
is continuously enlarged with the IncreaseCluster func-
tion and evaluated with the function ComputeMigration-
Alternatives. The algorithm halts when one of the two
stop conditions are met: the cluster reaches a predetermined
size mcs (max cluster size), i.e., size(T) > mcs, or the
increased cluster is equal to the old one (newT = T). The
next switch in A is then selected and inserted in an empty
cluster T . When the mssls (max starting switch list size)
is reached, all the migration alternatives are evaluated using
the AlternativeEvaluation function. The best alternative
composed by T 0 (the cluster) and the target SDN controller
(the controller that will receive T 0) are chosen and the

520 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 3, MARCH 2019

migration can occur. In the following we will give a detailed
explanation of the aforementioned functions.

1 function ComputeMigrationAlternatives (T);
2 foreach SDN controller Ci do
3 “virtual” migrate cluster T to SDN controller Ci;
4 if LCi < L then
5 compute LCn , ∀Cn ∈ C;
6 compute migrationSize for this new

configuration;
7 save them in lastAlternatives

8 return lastAlternatives

ComputeMigrationAlternatives “virtual” migrates clus-
ter T to different SDN controller destinations. For each
controller, it computes the controller load and the migration
size. Table I shows a possible output of ComputeMigration-
Alternatives routine in a scenario with 60 switches and
5 controllers, when T = {S1,S2,S56}. For SDN controller Ci,
the function migrates T to SDN controller Ci (Line 3),
computing the new computational load at each SDN controller
(Line 5) and the migration cost migrationSize (Line 6)
defined as the number of switches that need to be migrated.

1 function IncreaseCluster(T);

2 neighborsT = ComputeNeighborsOfCluster(T);
3 foreach Si ∈ neighborsT do
4 newT = T ∪ Si;
5 savedDensities = [savedDensities; Si,

Density(newT)];

6 So
i = argmaxsavedDensitiesDensity(newT) ;

7 return T ∪ So
i ;

Starting from the cluster T , the function constructs the set
neighborsT composed of all SDN switches that are neighbors
to T . An SDN switch Si is a neighbor of T if ∃Sj ∈ T :
l(Si, Sj) �= 0, l(Sj, Si) �= 0. The function then selects the
neighbor that maximizes the relative density Density [11] of
the newly created cluster. The rationale behind this relative
density maximization is that only SDN switches with strong
connections should be grouped into the same cluster. The
cluster will then be migrated between controllers as a whole
to reduce the overall computation complexity of controllers.

Definition 8: Relative density is the ratio of the internal
degree to the number of incident edges, i.e.,

Density(T) =

∑
Si,Sj∈T
Si �=Sj

l(Si, Sj)

∑
Si,Sj∈T
Si �=Sj

l(Si, Sj) +
∑

Si∈T
Sj∈S\T

l(Si, Sj)
(10)

Given the alternatives vector, EvaluateMigration
Alternatives chooses the best alternative ([T o,Target SDN

TABLE I

EXAMPLE OF Alternatives CARRIED OUT BY BALCON ALGORITHM
IN A TOPOLOGY WITH 60 SWITCHES, 5 CONTROLLERS AND

A CLUSTER T = {S1 , S2 , S56}

controllero]) among them, that optimizes one of the following
Evaluation-Method:

minMax - Minimize the maximum controllers load:

argmin
alternatives

(
max [LC1 , . . . , LC|C|]

)
(11)

minSum - Minimize the sum of controllers load:

argmin
alternatives

∑

Cm∈C
LCm (12)

integral - Maximize the distance from the controllers load
configuration in case of congestion:

argmax
alternatives

D([LC1 , . . . , LC|C|], [L̂C1 , . . . , L̂C|C|]) (13)

with [L̂C1 , . . . , L̂C|C|] the vector of controllers load when
congestion appears just before BalCon, and function D(u, v)
defined as follow:

D(u, v) =
∑

i

∫ vi

ui

x2dx (14)

V. MIGRATION BLACKOUT AND BALCONPLUS

A. Migration Blackout

Migrating switches among controllers dynamically based on
the controllers’ load can balance their loads so as to relief
congestion. However, during the migration, some switches
may not be able to handle new connections timely, which is
called the migration blackout [5], [7].

Dixit et al. [5], [7] presented a switch migration protocol
that can safely migrate switches between two controllers with-
out violating the liveness, safety, and serializability properties.

The migration protocol is explained in Figure 4, where a
switch is migrated from controller 1 to controller 2 in four
phases.

In phase 1, controller 1 sends a Start Migration message to
controller 2, which upon receiving the message will change
its role to equal, meaning that it can now receive messages
from the switch, but can not process them. Controller 2 will
then immediately send a Ready for migration to controller 1,
which completes phase 1.

XU et al.: DYNAMIC SWITCH MIGRATION IN DISTRIBUTED SDNs 521

Fig. 4. Protocol for migrating a switch from a controller to another.

In phase 2, controller 1 will first send state info of the switch
to controller 2 to enable it to take over from where controller 1
left after the migration. At the same time (in parallel to the
state info transmission), controller 1 will install an dummy
flow entry to the switch and delete it afterwards. The purpose
of doing this is to trigger a dummy flow deletion reply
from the switch, which is sent to both controllers to signal
them a migration event. After this event, all processing and
decision-making will be the responsibility of controller 2 while
controller 1 will ignore any messages from the switch. This
concludes phase 2.

In phase 3, although controller 2 possesses the control of
the switch, it cannot install any flow entries to the switch
yet. This is because there might be outstanding tasks being
processed by the controller 1. Controller 2 needs to wait until
the completion of these outstanding tasks and the installation
of corresponding flow entries before it can install flow entries
to the switch. Meanwhile, all messages received by controller 2
will be buffered. Once finishing all outstanding tasks, con-
troller 1 will ensure that the corresponding flow entries are
successfully installed in the switch by sending a barrier request
to the switch to flush all outstanding flow-mod messages. After
receiving the barrier reply from the switch, controller 1 needs
to send all modified state info since the beginning of phase 2
to controller 2 and ends the entire migration procedure by
sending out an End migration message.

In phase 4, controller 1 changes its role to slave and
controller 2 changes its to master. All messages buffered at
controller 2 in phase 3 can now be processed.

Based on the above migration procedure, we can see that
there is a migration blackout period equal to the length of
phase 3. In this period, packet-in messages from the switch
cannot be immediately processed by controller 2, which may

defer connection setup for new flows. Our prototype shows
the blackout period can be as large as 370ms (details are in
Section VII-E), which is larger than the value 50 ∼ 100ms
reported in [5] and [7]. This larger blackout period is due to
the fact that the controller that is releasing the control of a
switch is severely overloaded. Thus, the processing is slower
as opposed to an idle controller.

The 370ms blackout time is apparently too large, especially
for applications in datacenters, which usually require latency
in tens of μs. However, as pointed out in [5] and [7],
if serializability property is not required (i.e., messages from
the switch can be processed out-of-order), this blackout period
can be removed and the setup of new connections will not
experience extra latency. BalCon is good for such cases.

If the network requires the serializability property, switch
migration based on BalCon may cause temporary service dis-
ruption. To address this issue, we propose an improved version
of BalCon, named BalConPlus, to avoid service disruption
during the migration.

B. BalConPlus

The main idea of BalConPlus is to temporarily steer newly
arriving flows away from switches that are to be migrated
so their flow setup will not be affected by the migration.
To achieve this goal, BalConPlus makes two changes to the
baseline BalCon.

(1) The first change applies when BalCon selects which
switch(es) to migrate. In order to ensure that there is
always an alternative path bypassing the switches to be
migrated, BalConPlus adds a new constraint to the selec-
tion of migrating switches: the (hypothetical) removal of
the selected switches should not break network connec-
tivity. This change only requires slight modification of
ComputeStartingSwitchesList and IncreaseCluster in
Algorithm 1. When preparing a list of individual SDN switches
that could be migrated in ComputeStartingSwitchesList,
we exclude those that could cause the network disjointed
if they were removed from the network. Consider the net-
work in Figure 1, all switches could be considered in
ComputeStartingSwitchesList because removing any sin-
gle one of them will not break network connectivity. When
we gradually augment the set of candidate migrating switches
in IncreaseCluster, we exclude those that could break the
network if they were removed. Consider the same example
in Figure 1, S5 and S7 cannot be selected at the same time
for migration, because removing them from the network will
divide the network into two parts. However, S5 or S7 can be
migrated individually because removing either one of them
will not break the network.

(2) The second change applies when BalCon conducts
routing computation for new flows arrived in the middle of
a migration. BalConPlus will steer new flows to the paths
bypassing the migrating switches. This may slightly increase
the hop count of the forwarding path of some flows; but as
compared to the hundreds of ms migration blackout period,
the slightly larger forwarding delay due to a longer path
becomes insignificant. Once the migration completes, new

522 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 3, MARCH 2019

TABLE II

COMPARISON OF BALCON AND BALCONPLUS

flows will be routed on their best paths. Consider the example
in Figure 1, if we want to migrate S5 from controller C2 to
C1, new flows from H2 to H6 during the switch migration
should be routed to a different path (such as H2 → S2 →
S4→ S7→ S6→ H6) to bypass S5.

It is noted that based on the above two changes, BalConPlus
will not select edge switches for migration (i.e., those directly
connected to hosts). Because if an edge switch is selected for
migration, its connected hosts will inevitably be disconnected
from the network and lead to temporary service disruption.
With the example in Figure 1, switch S2 should not be selected
for migration, because it will temporarily disconnect host
H2 from the network during the migration blackout period.

Here we call switches that are not directly connected to
hosts core switches. In many network topologies, such as
FatTree topology in datacenter networks, we usually have
more core switches than edge switches in the scale-out struc-
ture. Thus, migrating core switches provides enough flexibility
to adjust workload among the controllers.

C. BalCon Vs. BalConPlus

Table II provides a comparison between BalCon and
BalConPlus.

VI. PERFORMANCE EVALUATION WITH SIMULATIONS

BalCon and BalConPlus have been implemented using
Matlab R2015a 64bit for Linux. The simulations has
been carried out using a PC equipped with an Intel
Core i5-3340@3.10 GHz with 8 GB of 1600 MHz
DDR3 RAM and an OS Linux Mint 17. Both schemes have
similar simulation results and due to lack of space we only
present the simulation results for BalCon. The performance of
BalConPlus and comparison between BalCon and BalConPlus
will be presented in Section VII based on prototype testbed
we build.

A. Dynamic Scenario–Effectiveness of BalCon

Here we fix BalCon parameters (mcs, mssls and
EvaluationMethod) and evolve the network over time in
order to show the effectiveness of BalCon during a (simulated)
runtime network operation. We simulated 4 different network
topologies shown in Table III, varying the degree in which
edge-core (dEC) and core-core (dCC) nodes are connected.
In particular, dEC represents the number of connections that
each edge node has towards core nodes, while each dCC rep-
resents the number of connections each core node has towards

TABLE III

TOPOLOGIES SIMULATED FOR PERFORMANCE ANALYSIS

Fig. 5. Example of network topology with 9 edge nodes (in blue), 5 core
nodes (in gray), 3 controllers, dEC = 1 and dCC = full mesh.

other core nodes. To perform Dynamic Scenario simulations
we implemented a routine that generates flow arrivals and
departures at edge nodes following a Poisson process. For
each topology presented, we run 200 different simulations with
different seeds of the Poisson process generator. Each run sim-
ulates 2000s of network runtime operation. BalCon has been
setup using a starting switch list size mssls = 20 and a max-
imum cluster size mcs = 20 using Equation 13 (Integral) as
EvaluationMethod in EvaluateMigrationAlternatives.

Figure 5 shows a topology composed of 9 edge nodes
(in blue), 5 core nodes (in gray), and 3 controllers. dEC = 1
indicates that each edge node is connected to a single core
node, while dCC = full mesh since the core nodes form a
full mesh network.

Figure 6 shows the computational load of 5 controllers
(0 means no congestion at all, while 100 indicates overload)
during the simulation of Topology1. The green line represents
the congestion level of controller C5. As soon as it reaches
the threshold L = 90, BalCon is triggered using the starting
switch list size swlsm = 20 and the maximum cluster size

XU et al.: DYNAMIC SWITCH MIGRATION IN DISTRIBUTED SDNs 523

Fig. 6. Computational load of 5 controllers during Dynamic Scenario and the
effect of BalCon algorithm in simulations with Topology1 and seed = 1.
The blue line is LC1 , the red line is LC2 , the yellow line is LC3 , the violet
line is LC4 and the green line is LC5 .

Fig. 7. Comparison of the computational load between a static assigne-
ment (a) and BalCon (b) in Dynamic scenario with Topology3.

msc = 20. The different routines of BalCon are indicated with
black dotted ellipse.

BalCon performs well: the maximum computational load
during the 4 BalCon instances is reduced on average by 15%,
with an average of 2.4 switches migrated in each routine. The
computational time is 0.69s. The variance of the computational
load is reduced at each routine on average by 66%. In this
case BalCon can effectively balance the computational load
and solve the overloading problem at the controller with few
switch migrations.

Figure 7 clearly shows the performance advantage of
BalCon algorithm compared to the static assignment of the
switches to the controller using the same traffic pattern.
Figure 7(a) shows the computational load of the 5 con-
trollers without load balancing, i.e., static assignment, while
Figure 7(b) is the case in which BalCon is implemented. As we
observe, BalCon maintains the controllers’ load below the
threshold during runtime, whereas in the static assignment case
the congestion load exceeds the threshold (90) by 50%. Other
settings with different topologies in Table III show similar
results as Figure 7.

B. Static Scenario

In Static Scenario simulations set we fix the time instant
(when congestion occurs) and we vary BalCon parameters
in order to show how the parameters affect BalCon’s perfor-
mance. We varied mssls, mcs and the method for Evaluate-
MigrationAlternatives function. We simulated 4 different
network topologies shown in Table III. For each topology
we synthetically generated 500 different “congestion traffic
configurations” in which one controllers is congested. For
each congestion traffic configuration we run several instances
of BalCon algorithm varying mssls = {3, 5, 10, 20} and
mcs = {3, 5, 10, 20}.

For each simulation, we evaluated different performance
indicators. Let LC = [LC1, . . .] the vector denote the con-
trollers’ load, LC

con the controllers’ load when congestion
appears just before the application of BalCon and LC

bal the
loads after BalCon routine.

Definition 9: Let the congested controller
C∗

m = argmax LC
con and the congested controller load

LC
con(C∗

m). We define the Reduction Congested Controller
Load (%) as:

LC
bal(C∗

m)−LC
con(C∗

m)
LC

con(C∗
m)

· 100. (15)

Definition 10: Reduction Max Controller Load (%)

maxLC
bal −maxLC

con

maxLC
con · 100 (16)

Definition 11: Reduction Sum Controller Load (%)
∑

LC
bal −

∑
LC

con

∑
LC

con · 100 (17)

Definition 12: Reduction Variance Load (%)

V ar(LC
bal)− V ar(LC

con)
V ar(LC

con)
· 100 (18)

Figure 8 shows the performance of different versions
of BalCon by varying mssls and mcs using Topology1
and minMax as EvaluationMethod. In the first instance,
we consider the black bars, representing the choice of para-
meters [mssls, mcs] = [3, 3]. We observe a reduction of the
congested controller load by 12.55% (Figure 8(a)), a reduc-
tion of the max controllers load by 11.32% (Figure 8(b)),
an almost negligible reduction of the sum of the controllers
load (Figure 8(c)), a 47.10% of the reduction of the variance
(Figure 8(d)). We also observe that we obtain an average
migration size of 1.37 switches (Figure 8(e)) and an average
BalCon computation time of 0.13s (Figure 8(f)). Considering
now the other bars, we note that the performance is highly
dependent on the parameters. If we have a larger mssls and
mcs, we can increase the search space of the possible solutions
of BalCon. This translates to better performance. In fact, if we
consider the case [mssls, mcs] = [20, 20], we observe a
significant increase of the performance indicators described
before.

With large values of mssls and mcs, we can observe a small
increase of the migration size (from 1.37 to 2.05). BalCon is

524 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 3, MARCH 2019

Fig. 8. Performance of different version of BalCon varying mssls and mcs
using Topology1.

quite fast, in fact the computation time is lower than 1s (0.84s)
with higher values of mssls, and mcs. As we observe, BalCon
is highly efficient with low computation time and few switch
migrations needed.

VII. PROTOTYPE OF BALCON AND BALCONPLUS

AND EXPERIMENTAL RESULTS

In this section, we present further details on how we
designed and implemented BalConController by modifying
and adding components to RYU controller [8].

A. Design

BalConController architecture can be implemented through
a NorthBound application of the SDN controller and run in a
distributed fashion: only the congested controller will activate
the BalCon routine based on an updated map of the network.
In particular Figure 9 shows the modules involved in the
BalConController and their relationship with existing modules
in an SDN controller.

Graph Network Manager is the entity that gathers both
flow arrival statistics from Flow Stats Manager entity and
routing decisions from Routing Manager entity in order to
construct and update the local version of the graph represen-
tation G(S, E). G(S, E) is then continuously updated ([graph
network updates]) with the other SDN controllers. BalCon,
using the updated information in the local graph, computes
the computational load and the migration cluster in case
of congestion through the BalCon Algorithm entity. In case
of migration BalCon Algorithm informs Migration Manager
entity for the local migrations and other controllers for the
other migrations.

Fig. 9. BalConController architecture.

Fig. 10. Architecture of the experimental environment.

BalConController extends RYU functionalities, by sup-
porting the multicontroller features: it can run on multiple
instances on different hosts/networks (each controller has an
IP address) and each instance manages a portion of the
entire network. It also implements a homemade inter-controller
messaging through UDP sockets and a custom application
protocol in Python. The inter-controller messaging permits the
controllers to exchange themselves different kind of informa-
tion like among Graph Network Manager entities (e.g., traffic
updates) and Migration Manager entities (e.g., switches to be
migrated). A more reliable solution could be the use of dis-
tributed data store like Zookeeper or Hazelcast [7]. Migration
Manager module implements the switch migration procedure
proposed in [5] that guarantees liveness and safety for each
switch migration. Finally, BalConController fully implements
the BalCon algorithm that can run indipendently in each SDN
controller based on the unified view of the entire network
continuously updated.

B. Experiment Setting

We use two workstations to setup our testbed for
experiments: Workstation 1 and Workstation 2, as shown
in Figure 10. Workstation 1 with Intel Xeon Processor
X5650 and CentOS 7 is mainly for measuring the hardware
performance for Controller 4. Developed as a multi-thread Ryu
application, Controller 4 executes directly on Workstation 1 for
performance measurement. By separating it on an independent

XU et al.: DYNAMIC SWITCH MIGRATION IN DISTRIBUTED SDNs 525

Fig. 11. Logical network topology used in the experiment.

Fig. 12. Evaluation of controller load model accuracy.

machine, the overhead of virtualization [12] and scheduling
of operation system can be eliminated. Therefore, the perfor-
mance, including CPU loads and path-calculating time, can be
accurately and directly measured on the hardware.

On the other hand, Workstation 2 with Intel Xeon CPU
E5-2620 v4 and Windows Server 2016 Datacenter is mainly
for emulating the other three controllers and the data plane,
which runs in Mininet. The three controllers and Mininet run
on four independent virtual machines (VMs). The VM of
the mininet is set to have 16GB memory and 12 processors,
while VMs of three controllers each has 8GB memory and
4 processors. These VMs run Ubuntu 16.04 and are bridged
together with the physical network interface to connect to
Controller 4.

The logical network topology used in our experiment is
shown in Figure 11, which has 11 hosts and 16 switches
emulated in Mininet. Each controller initially controls four
switches. For example, Controller 2 controls S5, S6, S7 and
S8 in the beginning. We will observe the migration of these
switches between controllers to evaluate the functionality
correctness of BalCon and BalConPlus. In the following
experiments, the threshold used at each controller to trigger
switch migration is set as 60% of CPU load.

C. Automated Parameter Measurement

The operation of BalCon and BalConPlus requires knowing
values of α and β, based on which expected controller load
for each candidate of migration can be calculated. Here we
propose an automated method to measure α and β.

The load of a controller can be described by the following
equation.

Lc = packet_in_rate ∗ α + rule_installation_rate ∗ β + δ

(19)

Fig. 13. Control load balancing achieved by BalConPlus under synthetic
traffic.

where δ is the base (background) workload running in
the controller. In the equation, Lc, packet_in_rate and
rule_installation_rate can be measured in real-time by the
controller. The three variables, α, β, and δ can be calculated if
we can get three instances of this equation. In our experiment,
we collect three combinations of Lc, packet_in_rate and
rule_installation_rate at three random selected moments
and solve α, β, and δ. These calculated paramenters are
applied in BalCon and BalConPlus for controller load model-
ing and prediction.

Figure 12 shows the measured controller load (i.e., directly
pull the load from CPU) vs. calculated load (i.e., calculated
load based on solved α, β, δ and measured packet_in_rate
and rule_installation using Equation 19). In the figure,
the gray curve represents the measured instantaneous con-
troller load, which frustrates greatly. To get stable α, β and
δ values, we use the 16-sample moving average load to solve
them. The measured moving average load is shown in the
dotted black curve. The calculated load is shown in solid black
curve. We can see that even though the real CPU load does not
exactly match our model due to the possible effects mentioned
in [13], the trend is close enough for BalCon and BalConPlus
to predict the controller load. In our experiment, the values of
α, β, and δ are recalculated periodically since they may vary
over time.

D. Controller Load Balance

Firstly, we observe the CPU load balancing achieved by
BalConPlus (BalCon achieves similar balance results, and due
to lack of space we only present the experiment results of
BalConPlus). We conduct the experiments using both synthetic
traffic and real-life data center traffic traces.

1) Synthetic Traffic: We first generate new flows at constant
rate from host h1 to h10 on path (h1 → s1 → s7 →
s10 → s14 → h10). It is easy to see that the loads on
the four controllers are roughly similar. Then, we gradually
increase the flow generating rate from host h4 to h5 from 0 to
a point that Controller 2 will start to be congested. Then
switch 7 will be migrated by BalConPlus (BalCon as well)
to either Controller 1 or Controller 3.

The experiment result is shown in Figure 13. From
timestamp 273, we start to increase the flow generating
rate between h4 and h5. At timestamp 536, BalConPlus is
triggered, and switch s7 is migrated from Controller 2 to
Controller 1. The load at Controller 2 drops significantly, while
the load of Controller 1 only increases slightly. This shows

526 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 3, MARCH 2019

Fig. 14. Control load balancing achieved by BalConPlus under real-life data
center traffic.

that the overall controller load can be decreased due to the
switch clustering effect based on our model. The loads of four
controllers are shown to be balanced.

Then we gradually increase the flow generating rate from
host h6 to h11 from 0 to a point that Controller 3 starts to be
congested. In the experiment, switch 10 will be migrated by
BalConPlus (BalCon as well) to Controller 1. At time stamp
1168 in Figure 13, BalConPlus is triggered, and CPU load of
Controller 3 is reduced to below the threshold. The reason
why CPU load are not perfectly balanced among the four
controllers is because of the potential increment of the overall
CPU load if doing so. In this case, BalConPlus chooses the
migration candidate that will not increase too much of the
overall CPU load while reducing the load of Controller 3.

2) Real-Life Data Center Traffic Trace: We have collected
real-life traffic trace on a backbone link from a data cen-
ter operated by New York City Department of Education.
We randomly select three trunks from the trace with each
trunk lasting for 10 minutes and feed them to the three host
pairs (h1 → h10, h4 → h5, and h6 → h11) in the topology
in Figure 11.

The experiment result is shown in Figure 14. At timestamp
466 (1st migration), BalConPlus is triggered, and switch 11 is
migrated from Controller 3 to Controller 2. The load at
Controller 3 drops and the load at Controller 2 increases.
At timestamp 506 (2nd migration), BalConPlus is trig-
gered again, and switch 6 is migrated from Controller 2 to
Controller 1. The load at Controller 2 drops significantly and
the load at Controller 1 increases slightly. This shows that
the overall controller load can be decreased due to the switch
clustering effect based on our model. The loads at the four
controllers start to grow at timestamp 607. At timestamp 743
(3rd migration), BalConPlus is triggered, and switch 8 is
migrated from Controller 2 to Controller 4. The load at
Controller 2 drops and the load at Controller 4 increases. The
loads of four controllers are shown to be balanced.

E. BalCon Vs BalConPlus on Packet-In Response Time

As compared to the baseline BalCon, the response
delay caused by switch migration blackout is eliminated in
BalConPlus, which will find an alternative path without pass-
ing through the migrating switches. To compare the packet-in
response time in BalCon and BalConPlus, we measure the
delay from the moment that a packet-in is received by a
controller to the moment that corresponding flow-mod is sent
out to the switch.

We first measure the response time of Controller 4 dur-
ing a migration when new flows’ route passes the migrat-
ing switch. Given Controller 4 is running on a dedicated
server, we are able to measure very accurate delay, which is
around 370 ms. The measure on Controller 1 ∼ 3, however,
is difficult, because these controllers are running in VMs that
share the same physical workstation with the VM running
Mininet. The virtualization of VMs and Mininet and schedul-
ing of OS introduce huge disturbance on the measurement
delay by as much as 3 seconds, which is too large and drowns
the delay of migration blackout. The similar delay disturbance
of Mininet has also been observed and reported in [14].

In order to show the effect of migration blackout on
Controllers 1 ∼ 3 with disturbance introduced by virtual-
ization and OS scheduling, we purposely enlarge the length
of switch migration blackout (i.e., phase 3 in Figure 4) to
10 seconds. The result is shown in Figure 15, where the
x-axis is the index of each packet-in, and the y-axis is the
response time of the packet-in request. Figure 15(a) shows that
many packet-in requests in BalCon suffer from large response
delay due to two migrations occurred at Controller 1 and
Controller 4, and one migration occurred at Controller 3.
In Figure 15(a), Controller 2 has lower packet-in arrival rate,
so less packet-in requests suffer from the extra delay com-
paring to controllers 1 or 3. On the other hand, Figure 15(b)
shows the packet-in response time of BalConPlus. We can see
that none of packet-in requests suffers from the response delay
even though we have two migrations occurred at Controller 1
and three migrations occurred at Controller 4 during the
experiment.

VIII. RELATED WORKS

References [15]–[18] propose multi-threaded design
and parallelization techniques of OS processes in the
SDN controller. Mallon et al. [19] propose a rethinking of the
design of the SDN controllers into a lower level software that
leverages both operating system optimizations and modern
hardware features. Renart et al. [20] mitigate the scalability
problem of the SDN controller by offloading all the packet
inspection and creation to the GPU. References [21]–[27]
study the controller placement and QoS enforcement for SDN
in 5G and carrier networks.

Other works have also explored the implementation of
distributed controllers through the using of multiple hosts: with
different roles [28]–[30] or with equal roles [2]–[4]. The main
focus of these papers is to address the state consistency issue
across distributed controller instances, while preserving good
performance. Whereas [31]–[33] focus on the controller place-
ment problem minimizing the communication delay between
controllers and switches. Current existing distributed controller
solutions still suffer from the static mapping between SDN
switches and controllers, limiting the capability of dynamic
load adaptation. Dixit et al. [5], [7] propose an elastic distrib-
uted controller architecture able to force migration of SDN
switches to different controllers using the existing OpenFlow
standard, whereas Bari et al. [34] try to model the problem of

XU et al.: DYNAMIC SWITCH MIGRATION IN DISTRIBUTED SDNs 527

Fig. 15. Packet-in Response time of BalCon and BalConPlus when there is switch migration blackout.

switch-controller assignment, minimizing the communication
cost (in terms of hops) among controllers and switches.

Shah et al. [35] propose an SDN controller framework
named Cuttlefish that can adaptively offload a portion
of the application state to local controllers to achieve
higher throughput and lower latency on control plane.
Wang et al. [36] propose a new routing scheme to achieve both
controller load balance and link load balancing in an SDN.
Wang et al. [37], [38] propose a dynamic SDN controller
assignment scheme in data center networks with a goal to
balance the controller load while keeping the control traf-
fic overhead low. However, their model only considers the
controller load caused by flow request processing but ignores
the load for handling rule installation. They also don’t con-
sider the overhead incurred in switch migration. To overcome
the switch migration overhead, Huang et al. [39] propose
BLAC, a scheduling layer, between switches and controllers.
BLAC intercepts flow requests from switches and dispatches
them to different controllers to achieve controller balance.
Unfortunately, the scheme doesn’t consider the impact of
switch/controller location to the performance and the new
scheduling layer introduced will increase the communication
latency between switches and controllers. Muthanna et al. [40]
present a dynamic clustering algorithm to balance the load
among the distributed controllers in the SDN network. How-
ever, the scheme doesn’t consider the overhead involved in the
switch migration and the evaluation is solely based on Matlab
simulation.

IX. CONCLUSIONS

In this paper, we presented BalCon and BalConPlus, two
SDN switch migration schemes to achieve load balance among
SDN controllers with small migration cost. BalCon is suit-
able for scenarios where the network does not require serial
processing of switch requests. For other scenarios, BalConPlus
is more suitable, as it is immune to the switch migration
blackout and does not cause any service disruption. Both
schemes have been thoroughly evaluated with simulations

and experiments. The results demonstrate the practicality and
effectiveness of both schemes to achieve SDN controller
load balance. In our future work, we plan to extend the
implementation of BalCon and BalConPlus to other SDN
controller platforms such as OpenDayLight to study the impact
of controller platforms to the performance of BalCon and
BalConPlus.

REFERENCES

[1] M. Cello, Y. Xu, A. Walid, G. Wilfong, H. J. Chao, and M. Marchese,
“Balcon: A distributed elastic SDN control via efficient switch migra-
tion,” in Proc. IEEE Int. Conf. Cloud Eng. (IC2E), Apr. 2017, pp. 40–50.

[2] T. Koponen et al., “Onix: A distributed control platform for large-scale
production networks,” in Proc. 9th USENIX Conf. Operating Syst.
Design Implement. (OSDI), Berkeley, CA, USA, Oct. 2010, pp. 1–6.

[3] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feld-
mann, “Logically centralized?: State distribution trade-offs in software
defined networks,” in Proc. 1st Workshop Hot Topics Softw. Defined
Netw. (HotSDN), New York, NY, USA, 2012, pp. 1–6.

[4] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane
for openflow,” in Proc. Internet Netw. Manage. Conf. Res. Enterprise
Netw. (INM/WREN), Berkeley, CA, USA, 2010, p. 3.

[5] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. Kompella,
“Towards an elastic distributed SDN controller,” in Proc. 2nd ACM
SIGCOMM Workshop Hot Topics Softw. Defined Netw. (HotSDN),
New York, NY, USA, 2013, pp. 7–12.

[6] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. 10th ACM SIGCOMM Conf.
Internet Meas. (IMC), New York, NY, USA, 2010, pp. 267–280.

[7] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. R. Kompella,
“ElastiCon; An elastic distributed SDN controller,” in Proc. ACM/IEEE
Symp. Archit. Netw. Commun. Syst. (ANCS), Oct. 2014, pp. 17–27.

[8] RYU Controller. [Online]. Available: https://osrg.github.io/ryu/
[9] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-

works,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Apr. 2008.

[10] OpenFlow Switch Specification, Open Netw. Found., Menlo Park, CA,
USA, Mar. 2014. [Online]. Available: https://www.opennetworking.org

[11] S. E. Schaeffer, “Survey: Graph clustering,” Comput. Sci. Rev., vol. 1,
no. 1, pp. 27–64, Aug. 2007.

[12] S. Sudevalayam and P. Kulkarni, “Affinity-aware modeling of CPU usage
for provisioning virtualized applications,” in Proc. IEEE 4th Int. Conf.
Cloud Comput. (CLOUD), Jul. 2011, pp. 139–146.

[13] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky,
“Advanced study of SDN/openflow controllers,” in Proc. 9th Central
Eastern Eur. Softw. Eng. Conf. Russia, Oct. 2013, p. 1.

[14] S.-Y. Wang, C.-L. Chou, and C.-M. Yang, “EstiNet openflow net-
work simulator and emulator,” IEEE Commun. Mag., vol. 51, no. 9,
pp. 110–117, Sep. 2013.

528 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 3, MARCH 2019

[15] Z. Cai, A. L. Cox, and T. S. E. Ng, “Maestro: A system for scal-
able openflow control,” CS Dept., Rice Univ., Houston, TX, USA,
Tech. Rep. TR10-11, Dec. 2010.

[16] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood,
“On controller performance in software-defined networks,” in Proc. 2nd
USENIX Conf. Hot Topics Manage. Internet, Cloud, Enterprise Netw.
Services (Hot-ICE), Berkeley, CA, USA, Apr. 2012, pp. 1–6.

[17] D. Erickson, “The beacon openflow controller,” in Proc. 2nd ACM
SIGCOMM Workshop Hot Topics Softw. Defined Netw. (HotSDN),
New York, NY, USA, Aug. 2013, pp. 13–18.

[18] Floodlight OpenFlow Controller. Accessed: Apr. 24, 2014. [Online].
Available: http://www.projectfloodlight.org/floodlight/

[19] S. Mallon, V. Gramoli, and G. Jourjon, “Are today’s SDN controllers
ready for primetime?” in Proc. IEEE 41st Conf. Local Comput.
Netw. (LCN), Nov. 2016, pp. 325–332.

[20] E. G. Renart, E. Z. Zhang, and B. Nath, “Towards a GPU SDN con-
troller,” in Proc. Int. Conf. Workshops Netw. Syst. (NetSys), Mar. 2015,
pp. 1–5.

[21] A. Ksentini, M. Bagaa, and T. Taleb, “On using SDN in 5G:
The controller placement problem,” in Proc. IEEE Global Commun.
Conf. (GLOBECOM), Dec. 2016, pp. 1–6.

[22] D. L. C. Dutra, M. Bagaa, T. Taleb, and K. Samdanis, “Ensuring end-to-
end QoS based on multi-paths routing using SDN technology,” in Proc.
IEEE Global Commun. Conf. (GLOBECOM), Dec. 2017, pp. 1–6.

[23] T. Taleb, M. Bagaa, and A. Ksentini, “User mobility-aware virtual
network function placement for virtual 5g network infrastructure,” in
Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2015, pp. 3879–3884.

[24] M. Bagaa, T. Taleb, and A. Ksentini, “Service-aware network function
placement for efficient traffic handling in carrier cloud,” in Proc. IEEE
Wireless Commun. Netw. Conf. (WCNC), Apr. 2014, pp. 2402–2407.

[25] M. Bagaa, T. Taleb, A. Laghrissi, and A. Ksentini, “Efficient virtual
evolved packet core deployment across multiple cloud domains,” in Proc.
IEEE Wireless Commun. Netw. Conf. (WCNC), Apr. 2018, pp. 1–6.

[26] R. A. Addad, D. L. C. Dutra, M. Bagaa, T. Taleb, H. Flinck, and
M. Namane, “Benchmarking the ONOS intent interfaces to ease 5G
service management,” in Proc. IEEE GLOBECOM, 2018.

[27] R. A. Addad, T. Taleb, and H. Flinck, “Towards modeling cross-domain
network slices for 5G,” in Proc. IEEE GLOBECOM, 2018.

[28] S. H. Yeganeh and Y. Ganjali, “Kandoo: A framework for efficient and
scalable offloading of control applications,” in Proc. 1st Workshop Hot
Topics Softw. Defined Netw. (HotSDN), New York, NY, USA, Aug. 2012,
pp. 19–24.

[29] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based
networking with DIFANE,” in Proc. ACM SIGCOMM Conf., New York,
NY, USA, Oct. 2010, pp. 351–362.

[30] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “DevoFlow: Scaling flow management for
high-performance networks,” in Proc. ACM SIGCOMM Conf., New
York, NY, USA, 2011, pp. 254–265.

[31] B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” ACM SIGCOMM Comput. Commun. Rev., vol. 42, no. 4,
pp. 473–478, Sep. 2012.

[32] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner,
and P. Tran-Gia, “Pareto-optimal resilient controller placement in
SDN-based core networks,” in Proc. 25th Int. Teletraffic Congr. (ITC),
Sep. 2013, pp. 1–9.

[33] Y. Jiménez, C. Cervelló-Pastor, and A. J. García, “Defining a network
management architecture,” in Proc. 21st IEEE Int. Conf. Netw. Proto-
cols (ICNP), Oct. 2013, pp. 1–3.

[34] M. F. Bari et al., “Dynamic controller provisioning in software defined
networks,” in Proc. 9th Int. Conf. Netw. Service Manage. (CNSM),
Oct. 2013, pp. 18–25.

[35] R. Shah, M. Vutukuru, and P. Kulkarni, “Cuttlefish: Hierarchical SDN
controllers with adaptive offload,” in Proc. IEEE 26th Int. Conf. Netw.
Protocols (ICNP), Sep. 2018, pp. 198–208.

[36] H. Wang, H. Xu, L. Huang, J. Wang, and X. Yang, “Load-balancing
routing in software defined networks with multiple controllers,” Comput.
Netw., vol. 141, pp. 82–91, Aug. 2018.

[37] T. Wang, F. Liu, J. Guo, and H. Xu, “Dynamic SDN controller
assignment in data center networks: Stable matching with transfers,”
in Proc. 35th Annu. IEEE Int. Conf. Comput. Commun. (INFOCOM),
Apr. 2016, pp. 1–9.

[38] T. Wang, F. Liu, and H. Xu, “An Efficient online algorithm for dynamic
SDN controller assignment in data center networks,” IEEE/ACM Trans.
Netw., vol. 25, no. 5, pp. 2788–2801, Oct. 2017.

[39] V. Huang, Q. Fu, G. Chen, E. Wen, and J. Hart, “BLAC: A bindingless
architecture for distributed SDN controllers,” in Proc. IEEE 42nd Conf.
Local Comput. Netw. (LCN), Oct. 2017, pp. 146–154.

[40] A. Muthanna et al., “SDN multi-controller networks with load bal-
anced,” in Proc. 2nd Int. Conf. Future Netw. Distrib. Syst., Jun. 2018,
p. 57.

Yang Xu (S’05–M’07) received the B.E. degree
from the Beijing University of Posts and Telecom-
munications in 2001 and the M.Sc. and Ph.D.
degrees in computer science and technology from
Tsinghua University, China, in 2003 and 2007,
respectively. From 2007 to 2008, he was a Visiting
Assistant Professor at NYU-Poly, Brooklyn, NY,
USA. He is currently a Research Associate Professor
with the Department of Electrical and Computer
Engineering, New York University Tandon School
of Engineering, New York City, NY, USA. He has

published more than 60 journal and conference papers and holds over ten
U.S. and international granted patents on various aspects of networking
and computing. His research interests include software-defined networks,
data center networks, network function virtualization, and network security.
He served as a TPC member for many international conferences, as an
editor for the Elsevier Journal of Network and Computer Applications,
and as a Guest Editor for the IEEE JOURNAL ON SELECTED AREAS IN

COMMUNICATIONS—Special Series on Network Softwarization and Enablers
and the Wiley Security and Communication Networks Journal—Special Issue
on Network Security and Management in Software-Defined Network.

Marco Cello received the Ph.D. degree in telecom-
munication engineering from the University of
Genoa in 2012. In 2013, he was a Post-Doctoral
Research Fellow with the Polytechnic Institute of
New York University, New York City, NY, USA,
and a Visiting Researcher with NYU Abu Dhabi.
In 2014 and 2015, he was at the University of Genoa,
focusing on software-defined network (SDN) and
nanosatellite communications. In 2016 and 2017,
he was a Research Fellow at Nokia Bell Labs,
Dublin, Ireland, and at the Application Platforms

and Software Systems Research Laboratory, focusing on elastic serverless
architectures, container-based cloud infrastructures, and SDN. He got deep
experience in queuing theory, Markov chain, C/C++ and Python, and an
in-depth knowledge in Linux-based emulation of telecommunication networks,
IP networking technologies, SDN, L2 to L4 forwarding, QoS, traffic engineer-
ing, and routing protocols. He is currently the IT Manager at Rulex, a software
company specialized in artificial intelligence and autonomous decisions. He is
an In Charge of the whole IT infrastructure with the objective to make
the entire Rulex platform, more reliable, worldwide available, and full-cloud
compliant. He has co-authored over 20 scientific works, including international
journals, conferences, and patents.

I-Chih Wang was born in Changhua, Taiwan,
in 1994. He received the B.E.E. and M.Sc. degrees
from National Chiao Tung University, Hsinchu,
Taiwan, in 2016 and 2018, respectively. He is
currently in a joint dual Ph.D. Program between
National Chiao Tung University and the NYU
Tandon School of Engineering, New York City, NY,
USA. He is doing research about software-defined
network/NFV at the Computational Intelligence on
Automation Laboratory, Institution of Electrical and
Computer Engineering, National Chiao Tung Uni-

versity, and is also doing research about V2X at the High Speed Networking
Lab, NYU Tandon School of Engineering.

XU et al.: DYNAMIC SWITCH MIGRATION IN DISTRIBUTED SDNs 529

Anwar Walid received the B.S. and M.S. degrees in
electrical and computer engineering from New York
University, New York City, NY, USA, and the Ph.D.
degree from Columbia University, New York City,
NY, USA. He was at Nokia Bell Labs, Murray
Hill, NJ, USA, as the Head of the Mathematics of
System Research Department and as the Director
of University Research Partnerships. He is currently
the Director of Network Intelligence and Distributed
Systems Research and a Distinguished Member of
the Research Staff at Nokia Bell Labs. He is also

an Adjunct Professor at the Electrical Engineering Department, Columbia
University. He has over 20 U.S. and international granted patents on various
aspects of networking and computing. His research interests are in the control
and optimization of distributed systems, learning models and algorithms with
applications to Internet of Things (IoT), digital health, smart transportations,
cloud computing, and software-defined networking. He is a fellow of the
IEEE, and an Elected Member of the International Federation for Infor-
mation Processing Working Group 7.3 and the Tau Beta Pi Engineering
Honor Society. He received awards from the IEEE and ACM, including
the 2017 IEEE Communications Society William R. Bennett Prize and
the ACM SIGMETRICS/IFIP Performance Best Paper Award. He served
as an Associate Editor for the IEEE/ACM TRANSACTIONS ON CLOUD

COMPUTING, IEEE Network Magazine, and the IEEE/ACM TRANSACTIONS
ON NETWORKING. He served as the Technical Program Chair for the IEEE
INFOCOM, as the General Chair for the 2018 IEEE/ACM Conference on
Connected Health (CHASE), and as a Guest Editor for the IEEE IoT Journal—
Special Issue on AI-Enabled Cognitive Communications and Networking
for IoT.

Gordon Wilfong received the B.Sc. degree
(Hons.) in mathematics from Carleton University
in 1980 and the M.S. and Ph.D. degrees in computer
science from Cornell University, Ithaca, NY, USA,
in 1983 and 1984, respectively. He is currently
a Distinguished Member of Technical Staff with
the Mathematics Research Group, Nokia Bell Labs,
Murray Hill, NJ, USA. His major research interests
are in the design and analysis of algorithms.

Charles H.-P. Wen (M’07) received the Ph.D.
degree in very-large-scale integration verification
and test from the University of California, Santa Bar-
bara, Santa Barbara, CA, USA, in 2007. He is cur-
rently an Associate Professor with National Chiao
Tung University, Hsinchu, Taiwan. He is a Specialist
in computer engineering. His research is focused on
applying data mining and machine learning tech-
niques to SoC designs (including radiation hard-
ening, functional verification, and timing analysis)
and cloud networking (especially on performance

analysis and architecture design of large-scale datacenters). He was a recipient
of the Best Paper Award from the 2012 ASP-DAC, the 2014 SASIMI,
the 2016 ICOIN, and the 2017 ICOIN, and the Distinguished Young Scholar
Award from the Taiwan IC Design Society.

Mario Marchese (S’94–M’97–SM’04) was born
in Genoa, Italy, in 1967. He received the Laurea
degree (cum laude) and the Ph.D. (Italian “Dottorato
di Ricerca”) degree in telecommunications from
the University of Genoa, Italy, in 1992 and 1997,
respectively. From 1999 to 2005, he was with the
Italian Consortium of Telecommunications, by the
University of Genoa Research Unit, where he was
the Head of Research. From 2005 to 2016, he was
an Associate Professor with the University of Genoa.
Since 2016, he has been a Full Professor with the

University of Genoa. He has authored the book Quality of Service Over
Heterogeneous Networks (John Wiley & Sons, Chichester, 2007), and has
authored or co-authored more than 300 scientific works, including interna-
tional magazines, international conferences, and book chapters. His main
research activity concerns: networking, quality of service over heterogeneous
networks, software-defined networking, satellite DTN and nanosatellite net-
works, and networking security. He is the Winner of the IEEE ComSoc Award
“2008 Satellite Communications Distinguished Service Award” in recognition
of significant professional standing and contributions in the field of satellite
communications technology. He was the Chair of the IEEE Satellite and Space
Communications Technical Committee from 2006 to 2008.

H. Jonathan Chao (M’83–F’01) received the B.S.
and M.S. degrees in electrical engineering from
National Chiao Tung University, Taiwan, in 1977
and 1980, respectively, and the Ph.D. degree in
electrical engineering from The Ohio State Univer-
sity, Columbus, OH, USA, in 1985. He was the
Head of the Electrical and Computer Engineering
(ECE) Department, New York University (NYU),
New York, NY, USA, from 2004 to 2014. He has
been involved in research for software-defined net-
working, network function virtualization, datacenter

networks, high-speed packet processing/switching/routing, network security,
quality-of-service control, network on chip, and machine learning for net-
working. From 2000 to 2001, he was the Co-Founder and the CTO of Coree
Networks, Tinton Falls, NJ, USA. From 1985 to 1992, he was a Member of
the technical staff at Bellcore, Piscataway, NJ, USA, where he was involved in
transport and switching system architecture designs and application-specified
integrated circuit implementations, such as the world’s first SONET-like
framer chip, ATM layer chip, sequencer chip (the first chip handling packet
scheduling), and ATM switch chip. He is currently a Professor of ECE,
NYU. He is also the Director of the High-Speed Networking Lab. He has co-
authored three networking books, Broadband Packet Switching Technologies—
A Practical Guide to ATM Switches and IP Routers (New York: Wiley, 2001),
Quality of Service Control in High-Speed Networks (New York: Wiley, 2001),
and High-Performance Switches and Routers (New York: Wiley, 2007). He
holds 61 patents and has published more than 260 journal and conference
papers. He is a Fellow of the National Academy of Inventors. He was a
recipient of the Bellcore Excellence Award in 1987, and was a co-recipient
of the 2001 Best Paper Award from the IEEE TRANSACTION ON CIRCUITS

AND SYSTEMS FOR VIDEO TECHNOLOGY.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

