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Abstract - In this paper, a novel optimization methodology is
investigated to optimize the resource allocation in a satellite system
where variations of fading conditions are added to those of traffic
load. A neural approximation technique is studied to exploit on line 
optimal reallocation laws, as functions of the state of the network. No
closed-form expressions for the system dynamic equations and the
functional cost are needed. Simulation results show how the proposed
technique outperms two other optimization strategies, based on a
certainty equivalent assumption and on the application of Perturbation
Analysis, respectively.

I. INTRODUCTION

OPTIMIZATION techniques for telecommunication
networks usually follow the minimization of a proper

functional cost as outlined in (1):
. (1)* arg min  [ , ]E L

We denote by  the performance index of interest
(e.g., blocking probability of connection requests, packet
loss probability, packets’ mean delay or delay jitter) and by

 the vector of the decision variables. The expectation 
 is over all the feasible sample paths

[ , ]L

E[ ]  of the

system. When the domain of the decision variables is
discrete, (1) expresses a NP-hard Stochastic Discrete
Resource Allocation Problem (SDRAP), whose optimal
solution can be found only through a strong consumption of
computing power. When closed-form expressions of 

 are available, a parameter adaptive certainty
equivalent control can be applied. To do this, it is often
necessary to assume the Markovian hypothesis concerning
the stochastic environment. The major drawbacks of such
approach stem from the related “curse of dimensionality”
problem (when Dynamic Programming is applied) and 
from the limited availability of closed-form expressions
when real life contexts are taken into account.

[ , ]L

In this perspective, Perturbation Analysis (PA) techniques
[1, 2] can be used to derive sensitivity estimators for the 
performance metrics under investigation, thus providing
on-line gradient descent algorithms capable to optimally
distribute the available resources among the users (see, e.g.,
[3, 4]). By applying a “surrogate” relaxation of the discrete
functional cost and without exploiting any closed-from
expression of , PA obtains reliable shorter-term
gradient estimators, only by looking at the current

realization of the stochastic variables involved in the 
problem. The forms of such estimators are obtained on real
data, by tracking the behaviour of the network and seeking
to continuously improve its performance.

[ , ]L

Unfortunately, PA-based techniques do not have any
guarantee concerning the time needed to reach the optimal
resource allocation.
Let ( )  be the “instantaneous” performance index of

interest (i.e., 
0

[ ( ), ( )] [ ( ), ( )]
t

L t t d ). When the

stochastic environment is not stationary and the problem is
explicitly formulated over time as a Dynamic Stochastic
Discrete Resource Allocation Problem (D-SDRAP):

1lim [ ( ), ( )]
t T

T
t

E t
T

d . (2)

the decision variables, driven by the PA estimator, need
some transient periods to “learn” optimality [4]. Therefore,
the study of control techniques capable to track the
sensitivity estimation, together with overcoming such
suboptimal transient periods reveals to be an hot topic of
research.
In this perspective, we study in this paper a novel control
methodology, suitable for the resource allocation in a 
satellite network. We face the related D-SDRAP by
exploiting a proper functional optimization problem.
Following the principles of PA, we do not explicit any
closed-form expression for the system dynamic equations
and for the functional cost.
To this aim, we properly modify the control methodology
of [5], in which a neural approximating technique is studied
to tackle the curse of dimensionality problem arising for the
structure of the decision functions as the dimension of state
vector increases. The key idea is to adopt PA to train the
neural decision functions off line, thus providing on line
optimal reactions to variable system conditions and with a
small computational effort.

The remainder of the paper is organized as follows. In the
next Section we summarize the network environment under
investigation and formulate the D-SDRAP we deal with. In
Section III, we detail a possible certainty equivalent
approach and, in Section IV, we propose a control
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algorithm based on PA. In Section V, we introduce the
functional optimization problem underlying the D-SDRAP
under investigation and formulate our neural approximating
technique. Simulation results are presented in Section VI to
compare the proposed optimization approaches and, in
Section V, we finally conclude by summarizing the
obtained results and emphasizing directions for future
research.

0

1( ) lim ( ( ), ( )) , 1,...,
T

d d
i i i i i

T
L d

T
i N

t

. (3)

Where 1( ) ( ),..., ( )d d d
Nt t

d

 is the vector of the

service capacities allocated to each station at time t . From
here on, we shall use the superscript d to stress that a
quantity belongs to a “discrete” set. As to , we have( )d t

( )d t :II. D-SDRAP IN A SATELLITE ENVIRONMENT

1
( ) : ( ) ( ) , ,  ( ) (4)

N
d N d d

d i i i i
i

t t h t MAU h t K

namely, the allocated service rate for each station is a
discrete number of “Minimum Allocation Units” (MAUs),
i.e., the smallest portion of bandwidth that can be assigned
to a station. K  is the total service capacity available for the
satellite system. The total loss volume of the overall system
becomes the sum of the contributions of each station:

A. The Model of the Satellite Network
In satellite networks, variable fading conditions over the

channel can heavily affect the transmission quality,
especially when working in Ka band, where the effect of 
rain over the quality of transmission is more significant [6].

The satellite environment under investigation consists of
a fully meshed satellite network that uses bent-pipe
geostationary satellite channels, joining N traffic stations.
With a notation that slightly differs from [2], each station i
is assumed to have a buffer of fixed size  with a single
server of capacity

iQ

i . The stochastic processes associated
with this model and useful in our optimization framework
are: ( )i t (the input flow), and ( ,i i t)  (the loss rate
process due to a full buffer).

1
1 0

1( ,..., ) lim ( ( ), ( ))
TN

d d d
N i i

T
i

L d
T i . (5)

D. The fading effect and problem formulation
The effect of fading is modeled as a reduction in the

bandwidth actually “seen” by a traffic station. The fading
effect is represented by a variable ( )i t , which shows how 

the bandwidth  is reduced. For each station i , at time
, the “real”

( )d
i t

( )i tt  is: 

B. The traffic model
We shall adopt a specific traffic model in order to

specify a closed-form functional cost of the performance
index. Hence, we introduce the model adopted for each
station’s input flow process ( ),  1,...,i t i N . . (6)( ) ( ) ( ); ( ) [0,1]; 1,...,d

i i i it t t t i N
We suppose that each ( )i t  is composed by a self-

similar stochastic process, due to the aggregation of some
variable bit rate sources. For each station i , the statistical
parameters that describe such process are: the peak bit rate

i
pB of the on-off sources and the burst arrival rate

(i i i
st M )i

bur   of the aggregated flow, namely, the 
average number of bursts “seen” by station . We denote

by

i
i  and i  the mean time durations of the burst (i.e., the

period of activity of a source) and the silence periods,
respectively, and are both Pareto distributed in order to
achieve a self similar behaviour of the aggregated flow [7], 

iM is the maximum number of on-off sources in the flow
( )i t .

The reduction of the bandwidth actually seen by the 
station is due to the increase in the bandwidth required to 
maintain a fixed Bit Error Rate (BER) through Forward
Error Correction (FEC) codes (and, possibly, transmission
bit rate reduction). Whenever the fading effect lowers the
signal strength, an adaptive control (located at the Physical
Layer) monitors the Carrier/Noise Power factor and, on the
basis of this measure, increases the redundancy of the
packets sent, introduced by the FEC and bit rate adaptation
[6]. In this way, since more bits are necessary to transmit a
single packet, and the bit duration may be increased, the
information bit rate is reduced, as if a smaller bandwidth
would be seen by the station.

The optimization problem can now be stated.
Problem D-SDRAP (Dynamic-Stochastic Discrete

Resource Allocation Problem): find  in a 
such a way that the cost function: 

*( ) ,  0d dt t
C. The performance measure

The performance measure of interest is the loss volume
. For each station  it is given by:( )L i

1,..., 1 0

1lim ( ( ), ( ), ( ))
N

TN
d

i i i i
T

i

E d
T

  (7)

is minimized. We denote by i the generic sample path for
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station , namely, a realization of the stochastic processes
that characterize the temporal evolution of station i :

i

 ( )i i( ), , 1,...,t t i N .

( ) ( 1)PLoss a a (
Rd

i i

T̂

ˆi i
i

d
X T

L

i

i

i
pB B

*

( )
arg min

d d

d

k

k

( )k

(

i

L ) 1,...,i

III. A CERTAINTY EQUIVALENT APPROACH

Also in the presence of a self-similar behaviour of the
traffic sources, it is possible to obtain analytical models for 
the computation of the loss probability performance. We
now describe in some detail such optimization strategy.
Following [6], we adopt the Tsybakov-Georganas formula
[7] for the cell loss probability  of each station i :iPLoss

1( )  if
8)( )

1   otherwise

a
ai

i i i
i i

R
Q X

X R

Lwhere  is a reference time interval (slot), and  is the

number of bits in a cell. Then,
ˆ

pT B
R

L
 is the number

of cells generated by an active burst in a slot and

represents the bandwidth d
i , assigned to

station  (and degraded according to the current value of
fading ), expressed in cells per slot (disregarding cell

overhead). Moreover, . For simplicity, we 

have assumed .

ˆi
burstTi

,p i

The D-SDRAP (7) can be now slightly modified by
taking into account (8), thus stating the problem of the
minimization of the overall loss probability at each time
instant where a new bandwidth reallocation is performed:

1
( ( )); 1,2,...

N
d

i i
i

PLoss k k  (9)

The index  denotes the reallocation time instants at 
which a new solution of (9) is computed, according to the
current state of the network (in terms of traffic load and
fading levels). The minimization of (9) can be performed
through dynamic programming, whose computational
burden limits its applicability in real time.

In the following, we shall denote the application of this
technique as CF&DP (Closed-form and Dynamic
Programming approach).

IV. THE ON-LINE SURROGATE ALGORITHM

In this section, we summarize the on-line “surrogate”
optimization technique of [3] and detail its application to
our problem. By means of the gradient of the functional

cost , , it is possible to obtain an on-line

optimization descent, in order to optimally distribute the 
available channel capacity among the stations [4]. As
regards the computation of such a gradient, the reader is
referred to [2], where a PA technique is investigated in
order to compute performance derivative estimators for a
traffic buffer, as function of the sample paths

N

i ,
1,...,i N  of the system. Once the discrete constraint set 

d  is “relaxed” into a continuous one :c

1

N

i

2,...

ˆ[ ]d kt

[( i

[( 1)c k t t

ˆ[ ]kt

,  ;c c
c c i i

c K . (10)

and letting  be the delay latency of the satellite system,
each station i , for every t k , must:

t̂
ˆ,  1,t k

1) observe the buffer temporal evolution during the time

interval according to the current sample path ˆ ˆ1) , ]k t kt

and bandwidth allocation ;

2) compute the gradient estimation ;

3) adjust the value of its “bandwidth allocation need“
using the gradient met

;

4) communicate  such  to each master station;

(for each station that has the role of master station) by
looking at the information received by the other stations (i.e.,

,ˆ] 1,..., ;N i ), convert to

the nearest discrete feasible neighbor .

ˆ[( 1) ]c k

d
d

ˆ ˆ[( 1) ],  [( 1) ]d d
i dk t k t

ˆ( [( 1) ])

i

L k t

hod:
ˆ( [( 1) ])ˆ ˆ[ ] [( 1) ]c d

i i
i

L k t
kt k t

ˆ[ ]c
i kt

Following [3], the nearest feasible neighbor

d  of  can be determined, at step 4,
by an O N

ˆ[( 1) ]c k t

1)(  algorithm based on the 1N  discrete

neighbors of , not necessarily all feasible, and
on the selection of one of them, which satisfies the discrete
constraint set 

ˆ[( 1) ]k t

d

c

.
In the following, we shall denote the application of this

technique as SE&GD (Sensitivity Estimation and Gradient
Descent optimization approach).

V. A FUNCTIONAL OPTIMIZATION APPROACH

As we shall show in the simulation results, the SE&GD 
technique can be successfully applied on line if the gradient
stepsize  is properly refined by means of an off-line
performance evaluation. However, the investigation
necessary to evaluate the best value for the gradient
stepsize  requires a deep simulation inspection [4]. On
the other hand, if the behaviour of the stochastic processes
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does not allow the decision variables to reach a steady state, 
it is difficult to verify if the on-line surrogate technique
guarantees the best performance. In order to avoid these
drawbacks and since it is impossible to solve (7)
analytically, we now study a closed-loop control strategy,
based on a functional optimization approach. The idea is to
provide resource reallocations as functions of a suitable
“information vector”  which summarizes the “recent
history” of the system. In particular, new resources
reallocations are performed for t k . Let: 

( )tI

 ((
((
((

1 ( )kt

[ (L

[ (dL k

ˆ,  0, 1,...t k

ˆ ˆ) ),..., (( 1)
ˆ) ),..., (( 1) ),
ˆ ˆ) ),..., (( 1) )) };

d dt k t

k t k t

k t k t
ˆ ˆ( ) { ( ),...,N Nkt kt

ˆ) , ( 1)k t k

ˆ , ]d t

, ]
ˆ

ˆ

kt T

kt

ˆ( ), ( ), ( ))d
i ikt

ˆ( )c kt

ˆ ˆ( ( ))ktf I
ˆ)

*( )f

ˆ ˆ[ ( ( )), , ]ktE L ktf I

ˆkt

c kt

d

1,...

)))t

(11)

ˆ

ˆ

( ) { ,
ˆ

kt col kI

be an aggregate vector that maintains a finite horizon
memory (of depth ) over the values assumed by the
decision variables and the measurable stochastic variables
during the time interval [( . Let

 be the functional cost

after such bandwidth reallocation (over an infinite time
horizon), namely

1ˆ ˆ ˆ( ) { ( ),..., }; ( )}kt kt kt

ˆ]t

ˆ ˆ
,

ˆ( ( )) ),d
kt ktJ kt E k

ˆ ˆ),kt t

1

1lim (
N

i
T

i

d
T

   (12)

Let  be a reallocation law, which provides a 

surrogate continuous bandwidth allocation

ˆ( ( ))ktf I

c as a
function of the current information vector:

 . (13)( )

Then, by converting  into its discrete feasible

neighbour  through the algorithm mentioned
in the Section IV, Problem D-SDRAP now becomes a
functional optimization problem.

(c kt

ˆ( )d kt

Problem FD-SDRAP (Functional Dynamic-Stochastic
Discrete Resource Allocation Problem): find the optimal
bandwidth reallocation function  such that

, and the cost:* ˆ( ) ,  0,dkt kf
(14)

,
ˆ( ( (ktJ kf I ˆ

is minimized. Such formulation yields a closed-loop
resource allocation law, able to perform on line dynamic
control reactions to variable traffic and fading levels
conditions. However, at time , new reallocations are 
performed “as if” they were to be applied without changes
in the future, i.e., possible changes in the statistics of the 
random variables are disregarded. Then, the control
strategy resulting from the solution of Problem FD-SDRAP

for successive time instants kt ,  can be
considered as an Open Loop Feedback Control (OLFC)
one.

ˆ 0,  1,...k

0
i ic ; 1,...,i N

0,..., ; ,i ii N1

0;  1,...,i
l c i)

( )

ˆ ˆ( (ktI ), )w

1
N

j
( ) ;  1i j i

A. The Modified Extended Ritz method
In order to approximate the optimal OLFC allocation law 
*( )f , we investigate an extension of the Extended Ritz

method ([5]). The Extended Ritz method is a technique that
consists of approximating the solution of a functional
optimization problem, by fixing the structure of the
decision functions; namely, such decision functions are
constrained to take on the structure of one hidden layer 
networks, i.e., linear combinations of basis functions
containing free parameters to be optimized:

1
( , ) ( , )l

l

col c pf I w I w (15)

,  1,..., ; ,  1,.., , 1,...,l ll c l c iw w

( , )p where  represents a suitable basis function.

N

Among the possible choices of structures of the form
(15), we choose one hidden layer feedforward neural
networks, in virtue of their powerful approximation
properties to face the possible exponential growth in the 
number of free parameters needed to obtain a growing
degree of accuracy. Then, we have:

1 0
1

( , ) ( wi T
l l

l

col c Nf I w w I   (16)

where ( ) 1 (1 )xx e  is a sigmoidal activation
function. With such a choice, we have

1 0, ,  1,...,l l lw lcolw w

,ct t

. In order to guarantee the
fulfilment of the “continuous” channel constraints (10) (i.e., 

( )c ), we compose the output of the neural
network with a “normalization operator” n . We thus
obtain the surrogate continuous bandwidth allocation

at any time kt  as: ˆ( )c kt ˆ

( )c kt n f (17)

( ) ( ) ,...,col K Nn .

The surrogate continuous bandwidth allocation
can be converted to the feasible bandwidth allocation

ˆ( )c kt

ˆ( )d
dkt . We call “neural approximators” the

functions (17) obtained as composition of the neural
networks (16) and the normalization operators ( )n .
Moreover, we shall call “neural bandwidth allocation
functions” the mappings made up by the composition of the
neural approximators together with the application of the
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algorithm that projects each  to its discrete feasible

neighbour  and denote it as .
It follows that a cost function is obtained by substituting the 
fixed structure of such neural bandwidth allocation function
into cost (14), depending on the parameter vector , thus 
leading to the following mathematical programming
problem.

ˆ( )c kt

ˆ ˆ( ( ),ktf I

ˆ ( ,kt w

ˆktL

ˆ
, ktE L

( , ,hL w

)h

ˆ( )d kt

h h

h h

h

ˆ ( ,ktLw w

ˆˆ ˆ( ) ( ( ), )d kt ktf I w

w

), ,w

, ), 0,1,2,..h h

( )

ˆ ( , ,h h h
ktLw w

( , , )hw

), 0,1,2,..h h h

, 1,...,c
iL i

( )L

, )d h h

, )d h h

Problem FD-SDRAPw. Find the optimal parameter
vector such that the cost *w

is minimized. In this way, the functional optimization
Problem FD-SDRAP (14) has been reduced to an
unconstrained nonlinear programming one.

ˆ
, ktE L (18)

B. The training algorithm
To solve such nonlinear programming problem, we apply

a gradient-based algorithm:
.w w  (19)1

,
E Lw

However, the explicit computation of the expected cost and
its gradient is a very hard task, even if closed-form
formulas for the functional cost  were available. We

choose to compute a realization 

instead of the gradient  and we apply 

the updating algorithm:

)

w

.w w   (20)1
ˆh ktw

where the index  denotes both the steps of the iterative
procedure and the generation of the hth realization of the
stochastic processes  and . The components of the

gradient can be obtained by using the
classical backpropagation equations for the training of
neural networks. The backpropagation procedure must be 
initialized by means of the quantities

h h ,

(i.e., the gradient ). Unfortunately, in our

case, such quantities cannot be obtained analytically as in
[5], because no closed-form of the functional cost 

( ,c L

 is 
available. In order to avoid such a heavy drawback, during
the off-line training phase (20), we estimate the gradient

 through the PA technique of [2], also

employed to develop the on-line surrogate algorithm of 
Section IV.

( ,c L

N

In the following, we shall denote the application of this
technique as “ExtRitz”.

VI. SIMULATION RESULTS

We developed a C++ simulator for the satellite network

under investigation and for the optimization algorithms
proposed in this paper. The width of the confidence interval
over the overall loss probability of the system was less then
1% for 95% of the cases. The number of active stations in 
the system is 2. We suppose no fading attenuation acting
over the system (i.e., ( ) 1;  1,..., ;i t i N t ). Similar
results are obtained in variable fading conditions. This was
validated by simulation results not reported here.

Each source is supposed to transmit at a peak bit rate 
pB =1.0 Mbps, the total capacity K is fixed to 65.0 Mbps

and the simulation time to 12 minutes. The number of
connections for each station is fixed at 70iM  for all i.
Variable systems conditions are taken into account 
according to Table 1. The maximum burst arrival rate is 35
bursts/s, but different lower traffic conditions can affect the
satellite stations (14.0, 23.33, 17.5 bursts/s). 
Time Interval (s) 0.0 – 120.0 120.0 – 240.0 240.0– 360.0

Station1, bursts/s 35.0 14.0 35.0

Station2, bursts/s 14.0 35.0 23.33

Time Interval (s) 360.0 – 480.0 480.0 – 600.0 600.0– 720.0

Station1, bursts/s 23.33 35.0 17.5

Station2, bursts/s 35.0 17.5 35.0

Table 1. Variable burst arrival rates. 
Both stations are provided with a finite buffer of 100

ATM cells. The reallocation period t  and the MAU are set 
to 1.0 and 100 Kbps, respectively (as, e.g., in [6]).

ˆ

The depth  of the time horizon of the information
vector ( )I

60

 in the ExtRitz technique was set to 5. The
training phase took around 28 hours with an AMD Athlon
@2.2GHz. As expected, different gradient step sizes yield
different behaviours of the SE&GD technique (Fig. 1 a), b),
c)). For each station, the fraction of the total system’s
capacity assigned by the SE&GD technique is visualized. It
is clear how SE&GD is able to react to traffic variations.
Sub-optimal transient periods are much more evident with

2 1 . It is worth noting that with too low gradient

stepsize values (i.e., ) and with too high

gradient stepsize values (i.e., ) the SE&GD
technique fails in optimizing the system performance.

1 6[10 ,10 ]

[3 1 7 90 ,10 ]
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Figs. 1. SE&GD’s allocations.
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Fig. 3. ExtRitz versus CF&DP at station 1. 
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Fig. 4. Loss performance.

The best SE&GD’s performance is achieved with 
 (see Fig. 4), since good reactions to traffic

changes are obtained without the strong bandwidth

oscillations exhibited when , especially in the
middle of the simulation horizon. On the other hand, the
ExtRitz technique (Fig. 2) always guarantees the best
reactions in front of the variable traffic conditions. The
CF&DP strategy does not achieve the optimal resource
allocation, as is clear by comparing its allocations with
respect to the ExtRitz’s ones, for example at the first station 
(Fig. 3). 

610 10

620 10

Looking at the ExtRitz bandwidth allocations, it is clear 
that (after the training phase) it provides the optimal
bandwidth allocations, without any sub-optimal transient
period. This fact, clearly, has an impact on the system 
performance (Fig. 4). The CF&DP does not maintain the
best resource allocation: the bandwidth allocation to the
station in heavier traffic load is lower than the one obtained
by applying the ExtRitz technique (around 40.0 Mbps using
CF&DP in front of the 45.0 Mbps obtained with ExtRitz).

The CF&DP technique, even if a perfect knowledge over
the traffic sources’ state is available, is not able to yield the
optimal resource allocation. In fact, the PLoss formula (8)
holds asymptotically in the number of sources [7] (i.e., the
number of sources in the aggregated flows should tend
to infinity, together with

( )t
). Hence, in a realistic scenario

with a finite number of on-off sources, it can be seen only
as a heuristic indication about the performance achieved by
the system under the current state of the network. On the
other hand, by exploiting sensitivity estimation, it is 
possible to capture the best resource allocation under
variables systems conditions. The proposed ExtRitz
technique makes use of PA to learn the best resource
allocation off line, without the need to explicit any closed-
form expression for the system dynamic equations and for
the functional cost.
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