
Implementation details to reduce the latency of an
SDN Statistical Fingerprint-Based IDS

Alessandro FAUSTO and Mario MARCHESE
DITEN

University of Genoa
DITEN, Via Opera Pia 11A, Genoa, Italy

alessandro.fausto@unige.it, mario.marchese@unige.it

Abstract—The paper represents the first implementation step
of a statistical fingerprint based Intrusion Detection System
(IDS) exploiting the SDN architecture already in the state of
the art. The IDS collects traffic data and implements a suitable
machine learning based algorithm to detect the possible presence
of malware within the data traffic, implementing the data man-
agement scheme within a Ryu SDN controller. The analysis of the
performance of the SDN infrastructure by which the Statistical
Fingerprint-Based IDS has been implemented identified critical
issues. The first issue to tackle is the delay introduced by the SDN
hardware/software, which may hinder the practical application
of the IDS. This paper presents the improvements applied to the
SDN infrastructure in order to minimize the delays introduced
by the SDN software infrastructure in a Ethernet-based network,
in view of an application over SCADA industrial systems. The
analysis focuses on the peak delays that correspond to the action
due to the arrival of the first packet of each new flow for which
there are not rules in the flow tables of the SDN switch yet. The
implemented actions are described in detail. The obtained results
are really promising.

Index Terms—Intrusion Detection System (IDS), Software
Defined Networking (SDN), Data Plane Development Kit, Ryu,
openFlow

I. INTRODUCTION

Intrusion Detection Systems (IDS) are hardware/software
components or groups of devices and components aimed
at monitoring a network or a system to detect malicious
activity. The paper originally appearing in [1] introduces a
statistical analysis based intrusion detection system, which,
after extracting a statistical fingerprint, uses a machine learning
classifier to decide whether a flow is affected by malware or
not. In parallel with the evolution of IDSs, the need of sim-
plifying network management has brought to the development
of the Software Defined Networking (SDN) paradigm, which
decouples data and control actions. Data forwarding func-
tions are located within devices (switches, routers, gateways)
called SDN switches. Control functions are concentrated in
SDN controllers whose communication with SDN switches is
managed through the OpenFlow signaling protocol. The basic
idea in [2], which is an evolution of [1], is implementing the
malware detector IDS in [1] within a Ryu SDN architecture.
[2] provides the main functional blocks of the proposed
architecture also reported in Fig. 1.

This paper tackles the first steps to get a real implemen-
tation of the architecture in [2] and presents the results of

Fig. 1. SDN statistical IDS infrastructure

the measurements about the delay introduced by the SDN
statistical IDS infrastructure on network packets. The objective
is to verify to what extent it is possible to reduce delays and
if they are compatible with the minimum response times of
SCADA industrial plants. The paper is structures as follows.
The next section describes the used system and its technical
details. Section III presents the used testbeds and shows the
tackled problems and the results obtained through the actions
used to reduce the delay. Section IV contains the conclusions.

II. DESCRIPTION OF THE IMPLEMENTED SDN IDS
INFRASTRUCTURE

The system consists of an SDN switch installed to intercept
all the traffic on the local network. The SDN switch is
connected through a network interface dedicated to an SDN
controller that manages flow tables. The flows are identified
through the classic vector composed of UDP/TCP-IP protocol
header fields: IP Source and Destination (IP SRC and DST),
Source and Destination Ports (SRC and DST Ports), Protocol.
When fully operational, the tables contain the management
rules for each flow that passes through the switch. Each packet
that belongs to a flow not yet present in the tables (in practice
the first packet of each new flow) is sent to the SDN controller
for analysis. At the end of the analysis the SDN controller
adds appropriate rules concerning the flow inside the SDN
switch and allows forwarding the flow packets. In more detail:
for each packet that belongs to a flow not yet ”cataloged”,
three new Openflow communications are generated (Packet-
In Message, Modify Flow entry Message and Packet-Out

Message) and the new flow is kept inside the data structure
of the IDS code. Instead, for each packet belonging to flows
already present in the flow table, the SDN switch simply
applies the rules by forwarding or dropping them. In order
to minimize the impact of the SDN IDS infrastructure on the
data forwarding operation, there are two bottlenecks that prove
to be the most relevant. The first one is the time needed to
analyze the packet received from the SDN switch and it is
closely related to the IDS code structure. The second one is
related to the software nature of the SDN infrastructure we
built. To carry out a ”trivial” packet forwarding many software
components communicating with each other and requiring a lot
of lines of code come into play: RX / TX queues of Ethernet
drivers, context switches between Kernel and user space, and
so on. Furthermore, this problem is amplified by the fact that,
for each packet belonging to a new flow, three openFlow
messages are exchanged. The SDN-based IDS infrastructure
has been implemented through the use of open source software
and Linux operating system (OS). The SDN switch is based
on Debian or Mint Linux systems with at least three Ethernet
network cards (100Mbit or 1Gbit) and Open vSwitch software
(OVS) SDN switches. The SDN controller is based on a
Gentoo Linux system and, as said, a Ryu SDN software
controller where the IDS code is added. Please see sections
III-D, III-E and III-F below for more information on software
and hardware used. By acting on both software (Linux Kernel,
OVS, Ryu) and hardware (CPU, Ethernet card) it is possible
to minimize the delays associated with the SDN infrastructure
such as the ones about the exchange of openFlow messages
between switches and controllers, and the delays inside the
SDN switch. Acting on the IDS code, the times required for
the analysis of the first packet of each new flow have been
minimized.

III. TESTBEDS, IMPLEMENTED ACTIONS, AND RESULTS

Testbeds are composed of 2 computers provided with 3
network cards connected each other through two dedicated
Ethernet links and connected to the local network through the
left network card (Fig. 2). The two computers have different
roles: the first one (A) acts as SDN controller; the second one
(B) as SDN switch.

Fig. 2. TestBed structure

A (SDN controller) uses Linux Gentoo OS and Ryu soft-
ware (dev-python/ryu-4.26) to act as a Controller. It has a
CPU quadcore Intel® Core™i5-3340 CPU @ 3.10GHz, 16
GB RAM and has been provided with 4 network cards:

ethAWAN internet/local lan.

ethAOF openflow dedicted connection.
ethAINT network to analize (internal side).
ethAEXT network to analize (external side).

Three different testbeds have been implemented by only
varying B (B1, B2, B3) with the aim of obtaining increasingly
reduced latencies at the cost of ever-increasing complexity of
the software side and increasingly binding hardware demands.
All computers B are provided with a Linux Debian or Mint
OS and 3 network cards:

ethBOF openflow dedicated connection (internet for up-
dates).

ethBINT network to analyze (internal side).
ethBEXT network to analyze (external side).

B1 is an appliance Nokia IP120 provided with a AMD Geode
266 MHz CPU, 128 MB of RAM, and 3 Ethernet 10/100 Mbit
cards. B2 is a PC provided with a quad core Intel Q6600 CPU,
4 GB of RAM, and 3 Ethernet 10/100/1000 network cards. B3

is a PC provided with an Intel(R) Core(TM) i5-7400 CPU @
3.00GHz, 16 GB of RAM, and 3 Ethernet 10/100/1000 cards.

A. Network connections

ethAWAN connected to local network and internet.
ethAOF directly connected with ethBOF dedicated to

openFlow connection and to possible updates
of B

ethAINT directly connected with ethBINT (port #1
switch SDN) and used to simulate the internal
network traffic (INT) that B must analyze/filter

ethAEXT directly connected with ethBEXT (port #2
switch SDN) and used to receive the traffic
(EXT) that has been analyzed/filtered by B.

B. Logical infrastructure

Within Bx computers a virtual SDN switch has been created
by using an OVS software. It is made of two logical gates (#1
ethBINT , #2 ethBEXT). The first one assigned to ethBINT

and so to input traffic. The second one to ethBEXT and con-
sequently to output (filtered) traffic. The openFlow connection
of the control plane (Ryu - Ovs) happens through the dedicated
connection ethAOF e ethBOF . A acts as SDN controller
and receives the first packet of each new flow detected by
B over INT or EXT networks. Then it creates and sends the
monitoring rules to B which, at each predetermined interval,
sends the statistics of all the monitored flows to the controller.
At predetermined intervals the controller, through a trained
Machine Learning algorithm (ML), catalogs the flows and adds
the rules for the management of the flows according to their
assignation (normal or malware). For more information see
the already mentioned [1] and [2].

C. Testbed functioning

The entire testbed has been designed to work in real time
with constant performance monitoring. A has the possibility
to completely control the flow of the INT and EXT networks.
In this way it can analyze in detail the results of the filtering
action performed by B. A is responsible for creating the data

flow of the INT network that is filtered in real time by B.
The data flow of the INT network is created through the
port mirroring of the ethWAN connection with the chance to
add any network sample (normal or malware) to the traffic.
At the same time A receives the network traffic outgoing
from the SDN switch through the EXT network and should
therefore be cleaned of infected flows. Through the analysis
of the flows sent on INT and received by EXT it is possible
to verify the correct elimination of the infected flows. It is
also possible to measure the delay that each individual packet
has suffered from the instant when it has been sent from the
interface ethAINT to the instant when it has been received
at the interface ethAEXT . Automatic scripting engines act
on A and measure the OS performance of both computers
and individual software OVS and Ryu every 10 seconds. The
SDN switch acts as a pass-through filter having the only
task of filtering the flows whose transmission statistics are
considered by the classification algorithm belonging to a class
of malware. In order to measure the minimum performance
required by our SDN filtering system, systems B1, B2, B3

with increasing performance and complexity have been taken
into consideration. The research is currently focused on the
use of dedicated computers operating with Linux OS and
Open vSwitch software (OVS) excluding (for now) hardware
implementations.

D. TestBed A+B1

B1 system has been used to check the minimum limit
of computational performance that can be used to correctly
perform the filtering operations related to the SDN switch
(forwarding of the first packet of each new flow, managing
of routing rules and sending statistics related to rules). We
have chosen to use a minimal Debian distribution with only
the packages necessary to use the OVS software and an access
via ssh.

1) Issues A + B1: The B1 system did not present any
particular overloads during the whole test period and the OS,
even with limited resources, has always remained responsive.
This testbed has been fundamental to bring out two related
problems. Our implementation of the SDN IDS created by
relying on the Ryu software introduces delays in the phases
both of managing the new flows and of acquiring the statistics
aimed at flow classification and filtering (carried out period-
ically). These delays are introduced for each first packet of
each new flow. This is due to the fact that the forwarding
rules of the new flow are added by the SDN controller only
after the analysis phase of the first packet of that flow is
completed. We have empirically seen that the frequency of the
new flows detected by the SDN switch (and therefore sent to
the controller for analysis) is not constant over time but there
is a tendency to create bursts of new flows and consequently
bursts of packets sent to the Ryu controller, added to a FIFO
processing queue from which they are picked up sequentially.
So delays are added together with a consequent rapid extension
of the response times as clear in Fig. 3.

Fig. 3. Increased delay due to burst of new flows

The majority of the bursts of new flows are UDP traffic
within the local network. The low percentage of bursts of
TCP traffic is linked to the fact that in the traffic of our local
network the activity of internet browsing and the consultations
of PDF documents, software packages or Linux ISO images
that have a payload of consistent size and stable connections
is predominant. This feature translates into a low rate of new
flows per second. The analysis time of a single new data flow
(in Fig. 4) was about 2 ms but, in the worst cases in the
presence of bursts, it could even reach 14 ms.

2) Improvement A + B1: The code of the demonstrative
SDN IDS presented in [2] has been revised and optimized.
The supporting data structure used to trace the new data flows
has been re-implemented by using a hash table optimized
for access through the flow identifier. This action, combined
with other minor modifications, has led to a reduction of the
analysis time of a single new data flow (in Fig. 5) at 1 ms of
average time with peaks of 3 ms.

The second problem is related to the fact that the compu-
tation of the statistics and the cataloging action performed by
the ML algorithm is carried out within the main process of the
Ryu controller which, for this motivation, is no longer able to
process other requests (including the reception of new flows)
until the end of the cataloging phase. This causes peaks in the
queue length of pending requests (most are packetIn) with the
relative increase in delay suffered by the packets of the new
flows. To solve this problem, the analysis of the statistics of
the flows and their classification have been moved to a specific
thread that processes them in parallel so that Ryu can proceed
with the management of the other requests received by the
SDN switch.

We then moved on to measure the delay times caused to the
test data flow by the SDN IDS system. To do this, the Tshark
software has been used to capture packets simultaneously from
the ethAINT and ethAEXT interfaces by printing the MD5
hash of the entire Ethernet package, the reception timestamp,
and other information for each packet.

tshark -t e -o frame.generate md5 hash:TRUE -
i enp5s0 -i enp3s0 -Tfields -e frame.md5 hash -
e frame.time epoch -e frame.number -e ip.src -e
ip.dst -e tcp.srcport -e tcp.dstport -e udp.srcport -e
udp.dstport -Y ”not stp and not arp and not loop”

These values have been processed by a python script to
compute the difference from the timestamps for each pair of

identical packets (same MD5 hash of the Ethernet package).
To avoid false positives, the packets that cyclically repeat (not
stp and not arp and not loop) have been eliminated through
a capture filter. The measured delays (in Fig. 6) have an
average value of 25 ms but peaks of 380 ms maximum delay
in correspondence of new flow bursts.

E. TestBed A+B2

Once optimized the SDN controller code, we have checked
how much an increase in system resources could affect the
system performance by decreasing the delays. We made a
second testbed by replacing the B1 system with the more
efficient B2 system. As expected, the delays introduced by the
SDN IDS infrastructure have been further reduced through a
more rapid management of the flow table linked to the increase
in CPU performance and to the possibility of parallel execution
between the various software components of the OVS system
and the Kernel. The average delay decreases to a value of 1.72
ms and the delay peaks related to the bursts of new flows to
54 ms. The minimum delays are around 0.2 ms.

F. TestBed A+B3

After implementing the described actions linked to the code
and the computational power, we have reached an intrinsic
limit due to the very nature of the SDN switch software.
From an analysis of the state of the art [3] it emerges that
the presence of a scheduler that manages the execution of
processes in parallel and other strictly technical elements
introduce waiting times that translate into delays that cannot
be optimized. To overcome this problem the open source world
has created the Data Plane Development Kit (DPDK) that can
be exploited by OVS to further improve performance. These
libraries have been designed to ensure a faster management of
packets received from Ethernet cards at the price of a signifi-
cant increase in complexity. These libraries take advantage of
the latest architectural CPU extensions (hugepages, iommu, vt-
x, vt-d, etc) and work in close synergy with the Linux Kernel.
First of all it is necessary to act on the boot parameters of the
Linux Kernel in order to enable the use of hugepages (pages
with a size of > 4Kbytes) and to configure the DPDK libraries
so that they take advantage of it. Then it is necessary to reserve
a part of the system’s CPUs for the execution of the DPDK
libraries and of the software that use them, prohibiting their
use to the Linux scheduler. Only a small set of network cards
can be used because optimized drivers are needed [4] [5]. An
excellent guideline for the use of DPDK is reported in [6].

The system B2 did not support the mimimum hardware
requirements to use DPDK [7], so we have used B3 provided
with an Intel 82571EB/82571GB Gigabit ethernet D0/D1 rev
06 (dual port) network card). Library DPDK version 19.05.0
has been compiled and installed on B3. The configuration has
been done coerently to instructions in [6]. OVS version 2.11.1
has been complied to exploit DPDK libraries.

1) Improvement A + B3: Test results (in Fig. 6) shows
excellent results further reducing delays and bringing the

maximum delay in correspondence of new packets bursts
around 11.72 ms.

IV. CONCLUSIONS

To achieve a maximum delay around 10 ms was a goal
because of the need to check the possibility of reducing the
delay times up to the KPIs [8] [9] [10] of a GOOSE network
before implementing any SDN IDS filter for this protocol.
These KPIs imply device to device transfer times below 20
ms for non tripping and class P2 / P3 messages, and below
100 ms for non tripping and class P1 messages. Still above
threshold are the tripping type and P1 class messages KPIs
requiring transfer times < 10 ms and tripping type and class
P2 / 3 messages KPIs requiring transfer times < 3 ms.

V. FUTURE WORK

We plan to check the chance to reduce the response times of
the current SDN IDS infrastructure by acting on three fronts:
looking for higher performance SDN software controller
implementations; using the latest generation network cards;
decreasing the load of the SDN controller by introducing more
SDN controllers that could mitigate the bursts of packets to
be cataloged; speeding up the Machine Learning cataloging
phase through the use of special hardware accelerators. We
will verify the possibility to use SDN controllers made with
compiled source code (C or C ++) and we will compare their
performance with the Ryu (python) based ones. We are already
currently creating a new testBed in which the SDN controller
system is equipped with a new IDS version capable of using
HW accelerators. We are also currently working on the new
NVIDIA Jetson Nano embedded card.

REFERENCES

[1] L. Boero, M. Cello, M. Marchese, E. Mariconti, T. Naqash, and
S. Zappatore, “Statistical fingerprint-based intrusion detection system
(sf-ids),” International Journal of Communication Systems, vol. 30,
no. 10, 2016.

[2] F. Bigotto, L. Boero, M. Marchese, and S. Zappatore, “Statistical
fingerprint-based ids in sdn architecture,” in SummerSim-SPECTS -
Society for Modeling & Simulation International (SCS), Bordeaux, FR,
France, Jul. 2018.

[3] R. Giller. Open vswitch with dpdk overview. [Online]. Available: https:
//software.intel.com/en-us/articles/open-vswitch-with-dpdk-overview

[4] Dpdk linux drivers. [Online]. Available: http://doc.dpdk.org/guides/
linux gsg/linux drivers.html

[5] Dpdk overview of networking drivers. [Online]. Available: http:
//doc.dpdk.org/guides/nics/overview.html

[6] Configure open vswitch with data plane development kit on ubuntu
server 17.04. [Online]. Available: https://software.intel.com/en-us/
articles/set-up-open-vswitch-with-dpdk-on-ubuntu-server

[7] Dpdk system requirements. [Online]. Available: http://doc.dpdk.org/
guides/linux gsg/sys reqs.html

[8] (2016) Substation communication with iec 61850 and application
examples. Page 18. [Online]. Available: http://www04.abb.com/
global/seitp/seitp202.nsf/0/4d1c836b9e7fdb67c12580870047d7c8/$file/
1.Chile +ABB+ Substatio+communication+with+IEC+61850+and+
application+examples.pdf

[9] V. Sushil Joshi, ABB Ltd, “Utilization of goose in mv substation,” in
16th national power systems conference, Hyderabad, IN, India, Dec.
2010, table II. [Online]. Available: http://www.iitk.ac.in/npsc/Papers/
NPSC2010/6114.pdf

[10] (2015) Iec 61850 ... the electrical scada standard and
integration with ddcmis. Page 37. [Online]. Available: https://
nebula.wsimg.com/a49e00efad15d7b63f58b0ff8bd94956?AccessKeyId=
1C24E49FE84FF4D32384&disposition=0&alloworigin=1

Fig. 4. IDS array structure testBed A+B1

Fig. 5. IDS hash structure testBed A+B1

Fig. 6. packet delay testBed A+B1

Fig. 7. packet delay testBed A+B2

Fig. 8. packet delay testBed A+B3

