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Abstract

Intrusion Detection Systems (IDS) are systems aimed at analyzing and detecting security problems.

IDS based on anomaly detection and, in particular, on statistical analysis, inspect each traffic flow

in order to get its statistical characterization, which represents the fingerprint of the flow. Software

Defined Networking (SDN) is revolutionizing the networking industry by enabling programmability,

easier management and faster innovation. These benefits are made possible by its centralized control

plane architecture which allows the network to be programmed and controlled by one central entity.

The fusion of these two technologies can lead to an innovative system of malware detection. This paper

introduces ADENOIDS a Statistical Fingerprint based Intrusion Detection System that is build on top

of an SDN architecture.

1 Introduction

Nowadays a lot of important applications such as public services, Internet banking, and also
systems devoted to defense are dependent on networks and computers. For this reason they are
often the target of malicious software (malware, spyware, etc...) attacks. Malware is software
specifically designed to insert itself in a computer system without the approval of the owner
using techniques such as trojans, backdoors, keylogger, and worms [27]. To prevent these type of
attack it is necessary to accurately detect malware and other type of intrusions [8]. In general it
is possible to use Intrusion Detection Systems (IDS) in order to tackle malicious intrusions. An
IDS is a piece of hardware/software designed to alert when someone or something is trying or has
tried to compromise systems. [22] describes two of the major classifications for what concern the
processing method in anomaly detection: Misuse and Anomaly Detection. The first one tries to
fix the abnormal behavior and considers the rest as normal. On the contrary the latter describes
the normal behavior and marks as abnormal what is not considered normal. Operatively the
former contains: signature based, rule based, state transition algorithms, and data mining.
The latter includes: statistical, distance, profile, and model-based schemes. Misuse Detection
(MD) systems in order to collect signature and information of the flow under analysis have
to open each packet of the flow. This type of approach is often very efficient but it has also
some limitations: for example, the signature of an attack can be dated, or, considering the
processing time, to open each single packet can be computationally heavy. Anomaly Detection,
and, in particular, statistical analysis based ones, which are taken as a reference in this paper,
would like to avoid these drawbacks also at the cost of a lower accuracy results: packets are
not deeply inspected but each traffic flow is monitored over time by measuring the statistics
of a set of variables (called features) to distinguish between anomalies (possible malware) and
normal behavior (normal, not infected, traffic). Software Defined Networking (SDN) [26] [19] is a
recent networking architecture that decouples user and control plane. In practice SDN separates
data and control actions operated by networking devices such as switches and routers. Data
functions are located within devices, control functions are concentrated in SDN controllers. The
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communication between an SDN controller and the devices under its domain is implemented
through a signalling protocol called OpenFlow. This paper proposes a novel Statistical Analysis
SDN-based IDS called ADENOIDS (Software Defined Networking-based Intrusion Detection
System). ADENOIDS uses the typical flow definition at TCP/IP (Transfer Control Protocol/
Internet Protocol) layers and is aimed at deciding whether an IP flow is malware-affected or not
under the framework of the SDN architecture. It is structured into a training phase developed
by using a ground truth of known flows and an operative classification and decision phase. Both
training and classification/decision phases are based on the definition and extraction of a group
of statistical parameters related to each IP flow, which represent the Statistical Fingerprint of
the flow and on machine learning-based classifiers devoted to distinguish normal from malicious
traffic.

The paper is organized as follows: Section 2 contains the state of the art concerning deep
packet inspection MD and Statistical Analysis-based Anomaly Detection, Section 3 describes
the differences between an SDN and non-SDN approach, Section 4 describes in detail the pro-
posed architecture, Section 5 shows the obtained results and Section 6 contains the conclusions.

2 State of the Art

Table 1 presents a comparison about processing method, complexity, speed, and limitations
between deep packet inspection MD and Statistical Analysis-based AD methods.

Deep Packet Statistical Analysis
Inspection MD Based AD

Processing method It examines the It opens packet
whole packet headers (e.g. at the IP

content, analysing and TCP/UDP layers)
data at application to identify flows

layer looking for and examines traffic
signatures/rules statistically

Complexity High Low
Speed Slow Fast
Limitations It cannot detect A training data

new virus or set is involved
encrypted flow

Table 1: MB Intrusion Detection versus SABID systems.

Concerning the family of Misuse Detection, [25] proposes a host-rule-behavior-based detec-
tion method, composed of a clustering engine that groups the objects of a suspicious program
together into a cluster. The authors show that their results are more satisfying than the ones got
by commercial antivirus software. [6] is a paper whose experimental results show the detection
ability of the system to learn effective rules from repeated presentations of a tagged training
set. [29] develops an automatic categorization system to automatically group phishing websites
or malware samples by using a cluster ensemble. [20] and [23] present algorithms based on the
analysis of operational code (operational code are part of machine language dedicated to specify
the operation to be performed). [20] is aimed at individuating a subset of opcodes suitable for
malware detection through SVM (Support Vector Machine). [23] proposes a method that uses
single-class learning to detect unknown malware families. Among signature-based approaches:
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[4] compares the performance of the intrusion detection systems Suricata and Snort. [10] selects
the possible signatures and uses only a subset of the necessary ones. [9] classifies packed and
polymorphic malware through a fast application-level emulator.

Considering the systems that use Anomaly Detection (or also hybrid Statistical Analy-
sis/Misuse Detection): [5] proposes a hybrid IDS combining packet header anomaly detection
(PHAD) and network traffic anomaly detection (NETAD). [15] describes a two stage architec-
ture to tackle intrusions. In the first stage a probabilistic classifier is used to detect potential
anomalies in the traffic. In the second stage a HMM (Hybrid Markov Model) traffic model is
used to narrow down the number of IP addresses carrying the attack. [21] introduces a hybrid
intrusion detection system that combines k-Means and two classifiers: K-nearest neighbor and
Naive Bayes for anomaly detection. [13] introduces a hybrid detection framework combining
misuse detection, which uses a Random Forest classification algorithm, and anomaly detection,
which exploits the weighted k-Means scheme.

[12] and [3] are aimed at detecting application-layer tunnels, which are the considered anoma-
lies, throughout Statistical Fingerprints. [12] presents a statistical classification mechanism
called Tunnel Hunter devoted to recognize a generic application protocol tunneled on top of
HTTP or of SSH. [3] aims at detecting DNS tunnels. Another important paper that uses tech-
niques similar concerning the one used in this paper, is [18], where streaming content changes
are detected only through traffic patterns built from the traffic volume achieved by routers.
[16] introduces a scheme for intrusion detection operating in WEKA. [28] proposes to struc-
ture Machine-Learning-based intrusion detection systems into Artificial Intelligence based and
Computational Intelligence based ones. The former refer to the methods from domains such
as statistical modeling, whereas the latter include methodologies such as genetic algorithms,
artificial neural network, fuzzy logic, and artificial immune systems. [17] extracts a long list of
features from the used dataset [1] and compares, different machine learning classifiers such as
DTNB, JRIP, PART, Ridor. [24] uses classifier J48, Random Forest and Random Tree in the
same operating environment by using the same dataset and list of features presented in [17] and
proposes to use a combination of classifiers to enhance the performance. [14] proposes a selec-
tion of features by using swarm intelligence algorithms, such as Artificial Bee Colony (ABC) or
Particle Swarm Optimization (PSO), and evaluates the performance through the same dataset
used in [1].

3 SDN vs Non-SDN approach

Our previous work [7] describes in detail the architecture of an Intrusion Detection System
based on Statistical Fingerprint that aims at distinguishing malicious traffic from normal one.
The model of the system is based on the classical TCP/IP architecture, composed of a flow
analyzer and a “filter”. The former analyzes all the flows traversing the interface, IP and
TCP/UDP headers of packets are checked in order to gather the necessary features for each
flow. The features that are used in [7] are reported in Table 2. The system has to compute
these parameters in order to characterize the flows traversing the network. For each flow the
second part of the system takes as input all the parameters showed in Table 2 and then applies
a machine learning technique to the purpose of detecting if the flow is affected by malware or
not.

The work presented in this paper is focusing on the use of the SDN paradigm as network
infrastructure for malware detection. What is the motivation to have an SDN-based IDS?
Software Defined Networking (SDN) is revolutionizing the networking industry by enabling
programmability, easier management and faster innovation. These benefits are made possible
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by its centralized control plane architecture, which allows the network to be programmed by the
application and controlled from one central entity. The SDN architecture is composed of both
switches/routers and a central controller (SDN controller). The peculiarity of this approach is
that it decouples control and data planes in two well separated entity:

• Forwarding element: it is a networking device (i.e. switch/router) but it is called
“switch” in the SDN paradigm. The only task that is responsible for is the forwarding of
packets inside the network. The switch processes packets according to rules stored in the
so-called flow tables that are filled by the controller.

• Controller: it is the brain of the entire network, it has the role of making decisions about
all the flows that traverse the network, and, consequently, to fill the flow tables inside each
SDN switch under its control.

The two entities communicate in order to exchange information and commands suited to manage
the entire network. The protocol standard that makes possible the communication between the
controller and the switches composing the network is OpenFlow [2]. Embedding a malware
detector IDS within SDN would be a clear step forward in the service provided by SDN and
would allow to simplify the IDS design being each action left to the SDN controller. Of course
the malware detection implementation on SDN presents some issues to investigate. The first
problem to tackle is that the SDN standard does not allow to get all parameters in Table 2,
which leads to a reduction of the features involved for the malware detection. For this reason
we have selected a limited number of features, in this way we can be compliant to the SDN-
OpenFlow standard and also with the features that most switches already available in the
market can really measure.

The new set of features that can be collected using the Software Defined Network archi-
tecture are reported in Table 3. As one can note their number is drastically reduced, starting
from 14, using the SDN paradigm, only 7 features can be used to detect if a flow is affected by
malware or not.

Features Description

Num Pack Number of packets
Tot Byte Flux Number of bytes
Flow Duration Duration of the flow in seconds
Byte Rate Byte rate
Packet Rate Packet rate
Delta Mean Average inter-arrival time of packets
Delta Std Standard deviation of inter-arrival time
LE “Entropy” of the packet lengths1

DPL Total number of subsets of packets having the
same length divided by the total number of
packets of the flow

First Len Length of the first packet
Max Len Length of the longest packet
Min Len Length of the shortest packet
Mean Len Average packet length
Std Len Standard deviation of the packet length

Table 2: Non SDN features for each flow as Statistical Fingerprint.
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Features Description

Num Pack Number of packets
Tot Byte Flux Number of bytes
Flow Duration Duration of the flow in seconds
Byte Rate Byte rate
Packet Rate Packet rate
First Len Length of the first packet
Mean Len Average packet length

Table 3: SDN features for each flow as Statistical Fingerprint.

As mentioned before, the features limitations is due to the SDN protocol and architecture.
Only the first packet of a flow, if and only if there are no rules to forward it, is received by the
controller. For this reason we can extract the length of the first packet of a flow and we cannot
compute the Delta parameter as well as LE, DPL, Max, Min and Std. Referring to Table 3:
only the Number of packets, the Number of bytes, and the Duration of the flow can be directly
measured by an SDN Switch and sent to the Controller through a suitable message. Byte and
Packet rate, as well as the Average packet length may be computed by the Controller on the
basis of the received information.

4 ADENOIDS Architecture

The architecture of the entire system is shown in Figure 1. The system is composed of an
SDN switch that is responsible for the routing of packets coming from the external interface
directed to the LAN and vice-versa. Inside the architecture, thanks to the SDN paradigm, it is
possible to implement the malware detector IDS needed to stop the malicious traffic. The main
component of the system is the Controller, which periodically collects traffic statistics, makes
computations so to get the features in Table 3 and, based on the Malware Database, applies a
configurable machine learning scheme that classifies the traffic as malware or normal traffic.

In more detail ADENOIDS works as described in the following: packets from the Internet
traverse an SDN switch under the control of the SDN controller. If the switch doesn’t have any
rule about the arrived packet, it sends the packet to the controller which takes the information
related to this packet and computes the rule needed to route it. After that the controller sends
the rule back to the switch that will be able to forward/manage the corresponding flow. A flow
is defined here by the vector {Source IP Address, Destination IP Address, Source TCP/UDP
Port, Destination TCP/UDP Port, Protocol} extracted from the IP, TCP/UDP header of the
first packet. From now on the flow is continuously monitored by the switch using the given
rule. The process is repeated for each “first packet” of any flow.

After a certain time period (called Tstat) the controller sends a feature request packet to the
switch in order to collect all the features of the flows that have traversed the switch. Once the
controller has received the feature reply that contains, as said, Number of packets, Number of
bytes, and Duration of the flows in [s], it elaborates this information to the purpose of extracting
the other features suitable for the analysis: Byte rate, Packet rate, and Average packet length.

1LE is calculated starting from the normalized occurrences of the packet lengths. Specifically, being Li the
number of times a packet has a length equal to i, LE is computed as LE = −

∑1526
i=0

Li
N

log2(Li
N

), where N is
the total number of packets belonging to the flow.
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Figure 1: ADENOIDS Architecture

The length of the first packet of the flow was already stored in the Controller. After that the
Controller classifies each flow as malware affected or not.

Malware Flows Packets

Cutwail 2347 35674
Purple Haze 7349 324709
Ramnit 25141 155973
Tbot 223 13048
Zeus 202 7443
ZeroAccess 350 2535
AlienspyRAT 1214 9010
Kuluoz 16894 179607

Table 4: Used malware.

The module of the Controller responsible of the classification of flows is called Flow Analyzer
as reported in Figure 1. This classification is made by a configurable machine learning technique.
It takes as input the model of the selected machine learning scheme, previously trained with the
use of the Malware Database composed of the 50% of the packets shown in Table 4 and applies
the model on the extracted features. The algorithm output is the distinction if the traffic is
malware affected or not.

5 Experimental Results

The architecture shown in Figure 1 is used as a reference for the experimental results. In
order to tune and test the Flow Analyzer, we have simulated the behavior of a network in
which there is both malware affected traffic and regular not affected flows. To do this we have
used as malware the 50% of the Malware Database not used for the training phase and we
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have mixed these flows with captured regular traffic which we know it doesn’t contain any
malware. The number of captured packets and flows is reported in Table 5. From the traces

Normal Traffic Flows Packets

Normal Traffic 1 4969 833368
Normal Traffic 2 12552 3533925
Normal Traffic 3 23351 4428188

Table 5: Captured normal traffic.

reported above the Controller extracts the Statistical Fingerprint (see Table 3) of all the flows
and forwards it as input to a suitable machine learning scheme whose selection is the aim of
this performance evaluation. The considered classification techniques are [11]: Linear SVM -
the frontier between regions is a linear function; Quadratic SVM - the frontier between regions
is a quadratic function; Cubic SVM - the frontier between regions is a cubic function; Radial
Basis Functions (RBF) SVM; K-Nearest Neighbors - K-NN with K = 1, and K = 3; JRIP;
Random Forest; DTNB; PART; Ridor; SMO; J48; Random Tree; and RBF Network. The
performance of the each classifier reported above has been evaluated by comparing the results
of the classification with the ground truth. Under this perspective, 4 cases, can occur:

• True Negative (TN) - A flow is normal traffic, i.e., it is not malware affected and it is
correctly classified as normal traffic.

• False Positive (FP) - A flow is normal traffic, i.e., it is not malware affected but it is
wrongly classified as malware. This case is also called False Alarm.

• True Positive (TP) - A flow is malware affected and it is correctly classified as malware.

• False Negative (FN) - A flow is malware affected but it is wrongly classified as normal
traffic. This case is also called Missed Detection.

The results for each single classifier are reported in Table 6 that includes also the boundaries
of the 95% confidence interval for the measure of the Accuracy, LINT for the lower bound and
HINT for the upper bound. The evaluation parameter Accuracy is computed by summing the
number of flows marked by the algorithm as True Negative and number of flows marked as True
Positive and by dividing the obtained quantity by the total number of flows.

The results show that the Flow Analyzer can individuate with a satisfactory precision the
tested malware. The tree based classifiers achieve better performances with respect to Support
Vector Machine ones: Random Forest and J48 show the best results in terms of Accuracy.
All the algorithms used for the tests show good results in terms of True Positives and False
Negatives, i.e. the flow is affected by malware and the applied machine learning technique
recognizes it as malware. Support Vector Machine-based schemes as well as NaiveBayes and
RBF Network and SMO fails in the recognition of normal traffic which is often wrongly classified
as a malware.

6 Conclusions

The paper tries to combine the advantage of a Statistical Fingerprint IDS with the potentiality
of a Software Defined Networking architecture. In this approach the brain of the system is
decoupled from the nodes that compose the network and is located in a centralized and well
separated entity. This entity has the control of the entire network and can act at higher
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Classifier Accuracy TP FN TN FP LINT HINT

1NN 96.5665 96.7 3.3 96.5 3.5 96.4126 96.7204
3NN 96.9311 97.6 2.4 96.2 3.8 96.7853 97.0769
Cubic SVM 50.6594 100 0 1.9 98.1 50.2368 51.082
DTNB 97.1059 98.4 1.6 95.9 4.1 96.9642 97.2476
J48 97.9280 98.7 1.3 97.2 2.8 97.8076 98.0484
JRIP 97.9038 99 1 96.8 3.2 97.7827 98.0249
Linear SVM 86.6679 94.1 5.9 79.3 20.7 86.3806 86.9552
NaiveBayes 72.0506 99.6 0.4 44.8 55.2 71.6713 72.4299
PART 97.8518 99.4 0.6 96.3 3.7 97.7292 97.9744
Quadratic SVM 50.3729 97.8 2.2 3.5 96.5 49.9503 50.7955
Random Forest 97.9727 98.7 1.3 97.3 2.7 97.8536 98.0918
Random Tree 97.4816 97.7 2.3 97.3 2.7 97.3492 97.614
RBF Network 69.2477 92.9 7.1 45.9 54.1 68.8576 69.6378
RBF SVM 79.8010 91.7 8.3 68 32 79.4616 80.1404
Ridor 97.1915 99.5 0.5 94.9 5.1 97.0518 97.3312
SMO 86.6679 94.1 5.9 79.3 20.7 86.3806 86.9552

Table 6: Evaluation parameters and 95% confidence interval.

level coordinating all the network nodes in order to avoid possible malware intrusions. This
approach can act by using hardware already in the market, the only requirement is to use the
OpenFlow protocol, which is already standardized and employed in the network environment.
The proposed system is called ADENOIDS (softwAre DEfined NetwOrk Intrusion Detection
System). It is composed essentially of two different entities: the network node also called
Switch, responsible for the collection of the features needed to infer information from the flows
traversing the network, and the Controller that acts as the brain of the network and contains a
configurable machine learning module that, starting from the features extracted by the switch,
completes the number of needed features through computations and decides if a flow is malware
affected or not. The scheme presented in this paper can lead to an innovative solution aimed
at stopping the proliferation of malware inside the network.
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